Electronic Supplementary Information

For

Catalytic oxygenation of phenols by arthropod hemocyanin, an oxygen carrier protein, from *Portunus trituberculatus*

Nobutaka Fujieda^a, Aki Yakiyama^b, and Shinobu Itoh^{*a}

^a Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan ^b Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku,

Osaka 558-8585, Japan

Contents:

Fig. S1 (A) The elution diagram of *Pt*-Hc after dialysis with dissociation buffer with ion-exchange column chromatography on RESORCE Q, (B) SDS/10 % polyacrylamide gel electrophoresis (PAGE) and (C) Blue native PAGE of the purified *Pt*-12Hc, *Pt*-6Hc and *Pt*-1Hc.

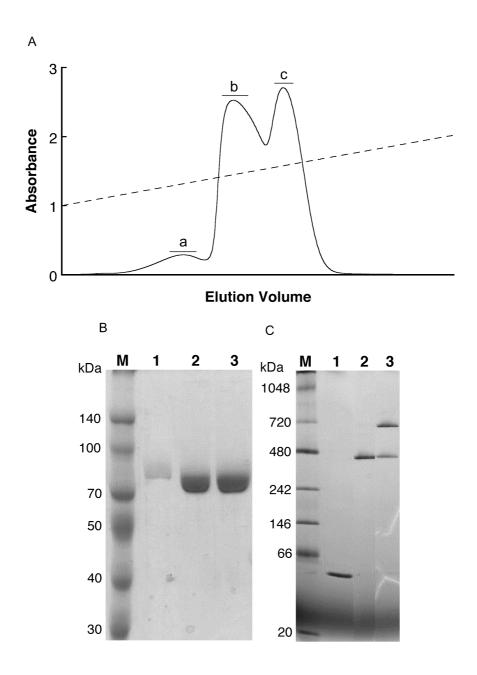
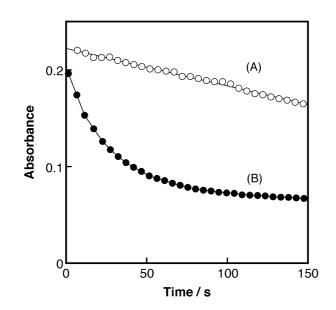
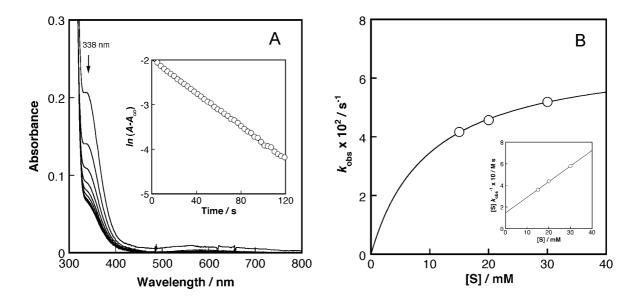
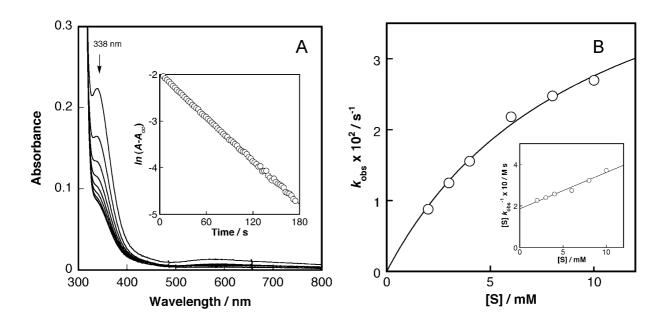

Fig. S2 Time courses of the absorbance change at 338 nm for the reactions of the oxy-form of *Pt*-1Hc (13 μ M) and *p*-cresol (5 mM) (A) in the absence of urea and (B) in the presence of 3 M urea in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol at 25 °C under anaerobic conditions.

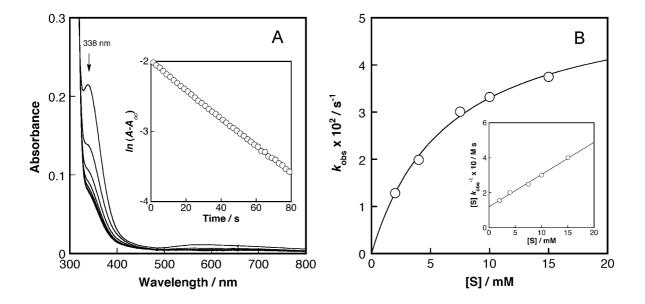
Fig. S3 ~ **S6** (A) Spectral change observed upon addition of *p*-substituted phenols to the oxy-form of *Pt*-1Hc (13 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3M urea at 25 °C under N₂ (inset: first-order plot based on the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate]. (inset: Hanes-Woolf plot)

Fig. S7 ~ **S11** (A) Spectral change of the fast phase observed upon addition of *p*-substituted phenols to the oxy-form of *Pt*-6Hc (39 μ M) in 0.5 M borate buffer (pH 9.0) containing 3 M urea and 5% (v/v) methanol at 25 °C under N₂ (inset: time course of the concentration change of *Pt*-6Hc). (B) Plot of *V*_{obs} vs. [Substrate] (inset: Hanes-Woolf plot) (right).


Scheme S1 Simplified catalytic system of monooxygenase (phenolase) reaction


Fig. S1 (A) The elution diagram of multimeric and monomeric *Pt*-Hc after dialysis with 0.05 M Tris-HCl buffer, pH 8.9 containing 0.01 M EDTA with ion-exchange column chromatography on RESORCE Q (Vol. 6 mL, GE Healthcare) at 4 °C in a 0.05 M Tris-HCl buffer, pH 8.9, with 0.01 M EDTA. Elution was carried out in a 0-0.4 M NaCl gradient using a ÄKTA prime plus. (B) SDS/10 % polyacrylamide gel electrophoresis. M, maker protein; 1, fraction a (*Pt*-1Hc); 2, fraction b (*Pt*-6Hc); 3, fraction c (*Pt*-12Hc). (C) Blue native polyacrylamide gel electrophoresis. M, maker protein; 1, fraction b (*Pt*-6Hc); 3, fraction c (*Pt*-1Hc); 2, fraction b (*Pt*-6Hc).


Fig. S2 Time courses of the absorbance change at 338 nm for the reactions of the oxy-form of monomeric *Pt*-1Hc (14 μ M) and *p*-methylphenol (5 mM) (A) in the absence of urea and (B) in the presence of 3 M urea in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol at 25 °C under anaerobic conditions.


Fig. S3 (A) Spectral change observed upon addition of *p*-fluorophenol (10 mM) to the oxy-form of monomeric *Pt*-1Hc (13 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 15 s interval (Inset: First-order plot based on the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

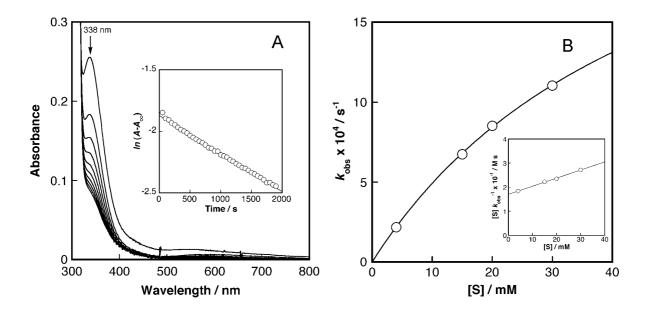
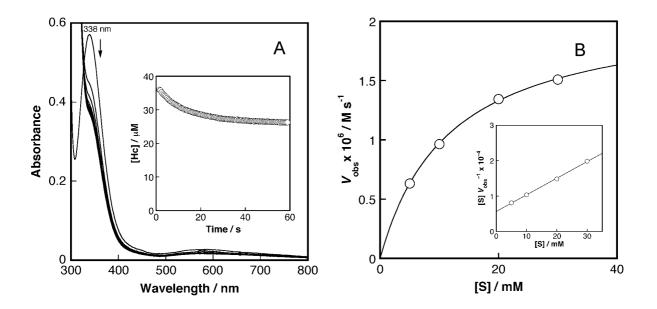
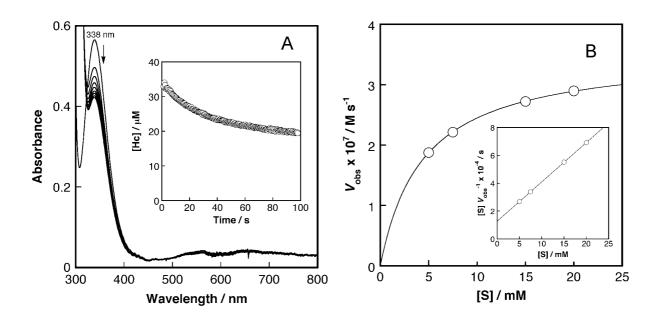
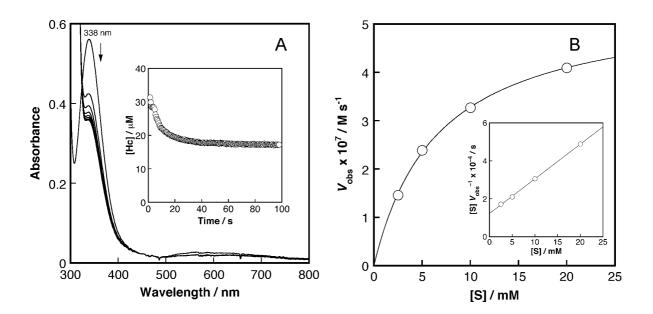

Fig. S4 (A) Spectral change observed upon addition of *p*-chlorophenol (4 mM) to the oxy-form of monomeric *Pt*-1Hc (13 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 15 s interval (Inset: First-order plot based on the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

Fig. S5 (A) Spectral change observed upon addition of *p*-bromophenol (4 mM) to the oxy-form of monomeric *Pt*-1Hc (13 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 40 s interval (Inset: First-order plot based on the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

Fig. S6 (A) Spectral change observed upon addition of *p*-cyanophenol (10 mM) to the oxy-form of monomeric *Pt*-1Hc (13 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 1000 s interval (Inset: First-order plot based on the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010


Fig. S7 (A) Spectral change of the fast phase observed upon addition of *p*-methoxyphenol (10 mM) to the oxy-form of hexameric *Pt*-6Hc (39 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 10 s interval (Time course of the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

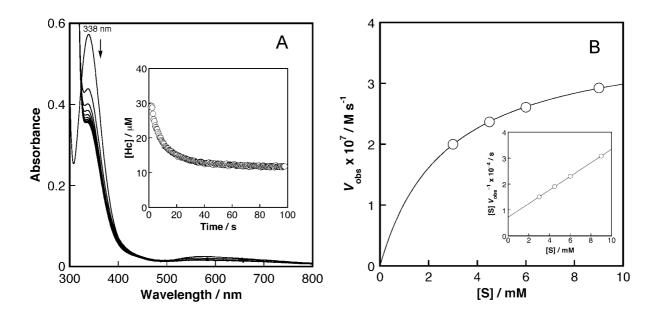

Fig. S8 (A) Spectral change of the fast phase observed upon addition of *p*-fluorophenol (10 mM) to the oxy-form of hexameric *Pt*-6Hc (39 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 10 s interval (Time course of the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

Fig. S9 (A) Spectral change of the fast phase observed upon addition of *p*-chlorophenol (10 mM) to the oxy-form of hexameric *Pt*-6Hc (39 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 10 s interval (Time course of the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

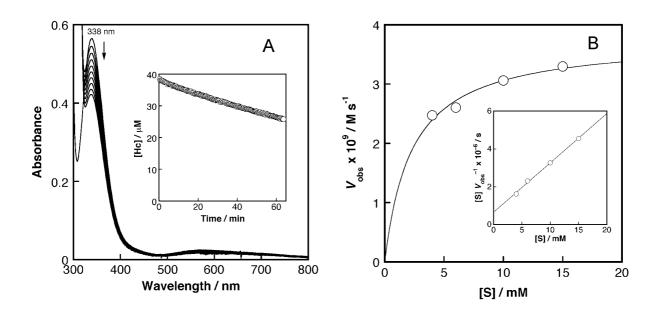


Fig. S10 (A) Spectral change of the fast phase observed upon addition of *p*-bromophenol (6 mM) to the oxy-form of hexameric *Pt*-6Hc (39 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 10 s interval (Time course of the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

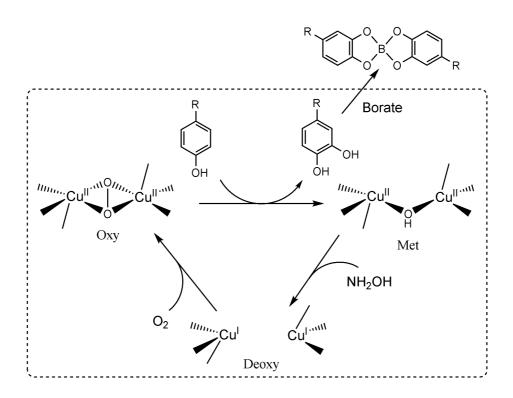


Fig. S11 (A) Spectral change of the fast phase observed upon addition of *p*-cyanophenol (10 mM) to the oxy-form of hexameric *Pt*-6Hc (39 μ M) in 0.5 M borate buffer (pH 9.0) containing 10 % (v/v) methanol and 3 M urea at 25 °C under N₂: 400 s interval (Time course of the absorption change at 338 nm). (B) Plot of k_{obs} vs. [Substrate] (Inset: Hanes-Woolf plot).

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Scheme S1

