Supporting Information

Synthesis, Structures and Photophysical Properties of Heterotrinuclear Zn₂Ln

Clusters (Ln = Nd, Eu, Tb, Er, Yb)

Hai-Bing Xu, Ye-Teng Zhong, Wei-Xiong Zhang, Zhong-Ning Chen, and Xiao-Ming Chen

MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

	2	3	4
Formula	$C_{50}H_{33.50}ClF_{12}N_4NdO_{10}Zn_2$	C ₅₀ H _{33.50} ClF ₁₂ N ₄ EuO ₁₀ Zn	$2 C_{50}H_{33.50}ClF_{12}N_4TbO_{10}Zn_2$
$M_{ m r}$	1388.74	1396.46	1403.42
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C2/c	C2/c
<i>T</i> (K)	298(2)	298(2)	298(2)
<i>a</i> (Å)	34.723(2)	34.725(2)	34.72(1)
<i>b</i> (Å)	18.470(1)	18.3371(8)	18.480(4)
<i>c</i> (Å)	24.125(1)	23.946(1)	24.15(1)
β (deg)	125.0233(8)	124.936(1)	125.291(2)
$V(\text{\AA}^3)$	12670(1)	12500(1)	12645(8)
$D_{\rm c} ({\rm g}\cdot{\rm cm}^{-3})$	1.456	1.484	1.474
Ζ	8	8	8
$\mu \text{ (mm}^{-1})$	1.687	1.883	1.988
Reflections collected	32525	33696	43449
Unique reflections	12444	12279	12353
$R_{ m int}$	0.0276	0.0342	0.0311
Goodness-of-fit on F^2	1.027	1.047	1.144
$R_1/wR_2 \left[I > 2\sigma(I)\right]$	0.0551/0.1519	0.0514/0.1379	0.0535/0.1487
R_1/wR_2 (all data)	0.0779/0.1773	0.0798/0.1663	0.0700/0.1788
Largest diff. peak and hole (e·Å ⁻³)	2.053/-0.599	1.637/-0.638	1.979/-1.505

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Table S2. Selected interatomic dista	nces (Å) and bon	d angles (deg) for 2-4
--------------------------------------	------------------	------------------------

	2	3	4
Ln-O1	2.363(3)	2.330(4)	2.314(3)
Ln-O2	2.503(3)	2.460(4)	2.442(3)
Ln-O3	2.478(3)	2.433(3)	2.414(2)
Ln-O4	2.376(3)	2.344(3)	2.315(2)
Ln-O7	2.429(4)	2.392(4)	2.370(3)
Ln-O8	2.436(4)	2.402(4)	2.373(3)
Zn1-N1	2.071(5)	2.063(5)	2.068(4)
Zn1-N2	2.104(4)	2.107(5)	2.114(4)
Zn1-O1	2.150(4)	2.144(4)	2.147(3)
Zn1-O2	2.136(3)	2.140(4)	2.140(2)
Zn1-O3	2.251(3)	2.263(4)	2.260(3)
Zn1-O6	2.022(4)	2.025(4)	2.026(3)
Zn2-O2	2.308(3)	2.308(3)	2.298(2)
Zn1…Zn2	3.241	3.238	3.228
Zn1…Ln	3.3540(7)	3.3238(8)	3.3099(11)
Zn2…Ln	3.3735(6)	3.3379(6)	3.3224(14)
Zn1-O1-C8	111.6(4)	112.0(4)	112.2(3)
Zn1-O2-C17	113.2(3)	112.8(3)	112.6(2)
Zn1-O2-Zn2	93.59(11)	93.35(12)	93.25(9)
01-Ln-02	70.48(11)	71.03(12)	71.33(8)
O1-Ln-O3	71.80(11)	72.69(12)	73.04(8)
O1-Ln-O4	135.76(12)	137.00(13)	137.71(9)

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

01-Ln-07	115.53(14)	114.94(15)	115.02(11)	
O1-Ln-O8	79.12(14)	78.68(15)	77.97(11)	
O2-Ln-O3	61.56(10)	62.67(11)	63.09(8)	
O2-Ln-O4	71.09(11)	71.56(12)	72.00(9)	
O2-Ln-O7	81.01(12)	79.95(14)	80.10(10)	
O2-Ln-O8	121.85(13)	122.50(14)	122.50(11)	
O3-Ln-O4	71.16(11)	71.80(12)	72.07(8)	
O3-Ln-O7	137.60(12)	137.55(13)	138.01(9)	
O3-Ln-O8	147.32(13)	146.94(13)	146.33(9)	
O4-Ln-O7	78.71(13)	78.11(14)	78.12(9)	
O4-Ln-O8	141.42(13)	140.96(14)	141.19(10)	
O7-Ln-O8	69.07(14)	70.20(15)	70.58(10)	
N1-Zn1-N2	99.94(19)	99.7(2)	100.93(16)	
N1-Zn1-O1	78.48(19)	78.8(2)	78.78(14)	
N1-Zn1-O2	159.74(19)	159.2(2)	159.05(13)	
N1-Zn1-O3	110.32(17)	110.58(18)	109.33(15)	
N1-Zn1-O6	94.2(2)	94.0(2)	94.25(14)	
N2-Zn1-O1	99.62(15)	99.86(15)	99.94(12)	
N2-Zn1-O2	78.24(15)	78.58(17)	78.64(12)	
N2-Zn1-O3	148.96(15)	148.86(16)	148.85(11)	
N2-Zn1-O6	94.38(17)	94.94(18)	94.54(14)	
O1-Zn1-O2	81.93(13)	81.07(14)	80.67(9)	
O1-Zn1-O3	80.35(12)	79.64(13)	79.33(10)	
O1-Zn1-O6	165.09(15)	164.40(16)	164.87(13)	
O2-Zn1-O3	70.99(11)	70.54(12)	70.47(9)	
O2-Zn1-O6	106.08(15)	106.85(16)	106.68(10)	
O3-Zn1-O6	90.28(14)	90.23(15)	90.55(12)	

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Fig. S1 The emission spectra of Zn₂Gd and complex 1 in CH₂Cl₂-CH₃CN solution at 77 K.

Fig. S2 The cyclic voltammogram of 6 in dichloromethane at 298 K

Fig. S3 The intermolecular π - π stacking of q ligands

Fig. S4 The chromaticity coordinates of 3 once irradiation with 360 nm in dichloromethane at 298 K

Experimental Section

Synthesis ofLn(hfac)₂(CH₃COO)(H₂O)₂ (Ln = Nd, Eu, Tb, Er, Yb): Ln₂O₃ were dissolved in CH₃COOH, after dissolved, the filtrates were evacuated to afford Ln(CH₃COO)₃. To an aqueous solution of lanthanide(III) acetates (pH = 5–7) were added dropwise 2.2 equiv of Hhfac with stirring at room temperature for 3 hrs. The precipitates were filtered, washed with excess of water, and dried under vacuum to afford the products without further purification.

Starting materials of Nd(hfac)₂(CH₃COO)(H₂O)₂: IR (KBr, cm⁻¹): 1651s (C=O, hfac); 1552(C=O, CH₃COO). C, 22.06; H, 1.39; Nd, 22.07. Found: C, 22.13; H, 1.28; Nd, 22.13.

Starting materials of Eu(hfac)₂(CH₃COO)(H₂O)₂: IR (KBr, cm⁻¹): 1652s (C=O, hfac); 1557(C=O, CH₃COO). C, 21.80; H, 1.37; Eu, 22.98. Found: C, 21.88; H, 1.38; Eu, 22.99.

Starting materials of Tb(hfac)₂(CH₃COO)(H₂O)₂: IR (KBr, cm⁻¹): 1652s (C=O, hfac); 1557(C=O, CH₃COO). C, 21.57; H, 1.36; Tb, 23.79. Found: C, 21.56; H, 1.33; Tb, 24.06.

Starting materials of Er(hfac)₂(CH₃COO)(H₂O)₂: IR (KBr, cm⁻¹): 1652s (C=O, hfac); 1567(C=O, CH₃COO). C, 21.31; H, 1.34; Er, 24.73. Found: C, 20.99; H, 1.22; Er, 24.99

Starting materials of Yb(hfac)₂(CH₃COO)(H₂O)₂: IR (KBr, cm⁻¹): 1652s (C=O, hfac); 1535(C=O, CH₃COO). C, 21.13; H, 1.33; Yb, 25.36. Found: C, 21.06; H, 1.36; Yb, 25.24.

Fig. S2. ESI–MS spectra of Nd(III) Complex

ESI-MS (CH₃OH): m/z (%) 654-618 [Nd(hfac)₂(CH₃COO)(H₂O)_n+H]⁺, (n=0, 1, 2).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

ESI-MS (CH₃OH): m/z (%) 662-626 [Eu(hfac)₂(CH₃COO)(H₂O)_n+H]⁺, (n=0, 1, 2).

ESI-MS (CH₃OH): m/z (%) 668-633 [Tb(hfac)₂(CH₃COO)(H₂O)_n+H]⁺, (n=0, 1, 2).

Fig. S5. ESI-MS spectra of Er(III) Complex

ESI-MS (CH₃OH): m/z (%) 677-641 [Er(hfac)₂(CH₃COO)(H₂O)_n+H]⁺, (n=0, 1, 2).

ESI-MS (CH₃OH): m/z (%) 682-647 [Yb(hfac)₂(CH₃COO)(H₂O)_n+H]⁺, (n=0, 1, 2).