15

20

Novel Cr^{III} dinuclear complexes supported by salicyloylhydrazono dithiolane and dithiane ligands : synthesis, stability, crystal structures and magnetic properties

Nicolas Clément,^a Clément Toussaint,^a Guillaume Rogez,^b Claudia Loose,^c Jens Kortus,^c Lydia Brelot^d, Sylvie Choua, ^e Samuel Dagorne,^aPhilippe Turek, ^e and Richard Welter^{*a}

^aLaboratoire DECOMET, UMR-CNRS 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67070 Strasbourg Cedex, France. Fax: +33 90 24 12 29; Tel: +33 90 24 15 93;

^b I.P.C.M.S., UMR-CNRS 7504, Groupe des Matériaux Inorganiques, Université de Strasbourg, 23 Rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France.

^c Institut für Theoretische Physik, TU Bergakademie Freiberg, Leipziger Str. 23, D-09599 Freiberg, Germany

^d Service de Radiocristallographie, UMR-CNRS 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67070 Strasbourg Cedex, France.

^e Laboratoire POMAM, UMR 7177 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg Cedex, France. Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S1 : ORTEP view of complex 1a, MeOH with full labeling scheme. The ellipsoids enclose 50% of the electronic density.

Ta	ble	S1	: Hydrogen	bonds	detected*	in com	plex	1a, MeOH	ł.
			2 0					,	

Туре	DonorHAcceptor	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
Intra	01H10N1	0.79(5)	1.89(5)	2.565(3)	144(5)
Intra	O3H3ON3	0.76(5)	1.94(5)	2.591(3)	143(5)
Intra	O5H5ON5	0.89(4)	1.80(3)	2.590(3)	147(4)
Solv.	<i>O7H7O4</i>	0.8398	2.1033	2.899(3)	157.90
Inter.	С9Н9ВО3\$1	0.9900	2.3817	3.321(5)	158.23
Inter.	C19—H19AO7\$4	0.9901	2.4851	3.313(4)	140.94
Inter.	C20—H20BO1\$2	0.9895	2.5418	3.303(4)	133.59
Inter.	C22—H22O2\$3	0.9508	2.4602	3.383(3)	163.54
Equivale	ent position codes : $\$1 = -1$ -	+x, y, z; \$2 = 1 +	x, y, z; \$3 = -x, -	y, $2-z$; $4 = x$, $1+$	-y, z

* Spek, A. L., PLATON software, J. Appl. Cryst., 2003, 36, 7.27

25

Figure S2 : ORTEP view of complex 2a, CH₂Cl₂,MeOH with full labeling scheme. The ellipsoids enclose 50% of the electronic density.

³⁵ Table S2 : Main hydrogen bonds detected* in complex 2a, CH₂Cl₂,MeOH

Туре	DonorHAcceptor	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
Intra	01—H01N4	0.8407	1.8349	2.572(4)	145.52
Intra	O3—HO3N2	0.8396	1.9731	2.658(4)	138.14
Intra	O5—HO5N6	0.8401	1.9067	2.636(4)	144.54
Intra	O7H7N8	0.8403	1.8630	2.590(4)	143.92
Intra	O1—HO1S6	0.8407	2.8687	3.582(3)	143.86
Intra	O7H7S3	0.8403	2.8362	3.576(4)	147.93
Solv.	011—H1101	0.8383	2.0076	2.806(4)	158.83
Inter	C19—H19AO6\$1	0.9905	2.5380	3.303(4)	133.86
Inter	C20—H20AO3\$2	0.9903	2.5046	3.264(5)	133.31
Inter	C22—H22O8\$3	0.9508	2.4960	3.317(4)	144.58
Inter	C25—H25S7\$4	0.9488	2.8163	3.494(3)	129.14
Equival	ent position codes : $1=3/$	2-x, 1/2+y, 3/2-z	= 2-x, -y, 2-z	$3 = 1 - x_{,-} - y_{,1} - z_{,-} + 3 = 3$	3/2-x,-1/2+y,3/2-z

* Spek, A. L., PLATON software, J. Appl. Cryst., 2003, 36, 7.27

Table S3 : Main CH- π interactions* in complex 2a, CH₂Cl₂,MeOH.

Туре	$X - H(I) \rightarrow Ring$	HCentroid (Å)	X-HCentroid (°)	XCentroid (Å)
Intra	C30H30B→(C1/C6)	2.8605	159.18	3.802(5)
Intra	C39H39A→(C11/C16)	2.6551	157.30	3.558(4)
Inter	C13H13→(C31/C36)\$5	2.7396	134.11	3.469(4)
Inter	C30H30A→(C31/C36)\$6	3.2841	133.44	4.030(5)
Solv.	C44H44A→(C11/C16)	2.5577	150.25	3.451(9)

 $_{40}$ Equivalent position codes : 5 = 1/2+x, -1/2-y, 1/2+z; 6 = 1/2-x, 1/2+y, 3/2-z

* Spek, A. L., PLATON software, J. Appl. Cryst., 2003, 36, 7.27

Figure S3 : ORTEP view of complex **2b** with full labeling scheme. The ellipsoids enclose 50% of the electronic density. Symmetry code for equivalent position : a = -x-1, -y+2, z

Table S4 : Main hydrogen bonds detected* in complex 2b.

45

Туре	DonorHAcceptor	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)		
Intra	O2—H2N2	0.8400	1.8507	2.5911(4)	146.18		
Intra	O5—H5N4	0.8400	1.8568	2.5949(4)	145.81		
Inter	C2—H2BO2\$1	0.9900	2.5790	3.227(3)	122.99		
Inter	C2—H2B1O2\$1	0.9776	2.5346	3.227(3)	127.72		
Intra	C12—H12AO1\$2	0.9800	2.5115	2.981(4)	109.16		
Intra	C12—H12CO4	0.9800	2.5809	3.115(4)	114.30		
Intra	C19—H19O4	0.9508	2.4485	2.784(4)	100.59		
Inter	C20—H20S2\$3	0.9500	2.8286	3.626(4)	142.11		
Equivalent position codes : $1 = -x, 1 - y, z$; $2 = -x, 2 - y, z$; $3 = x, -1/2 + y, -1/2 + z$.							

⁵⁰ * Spek, A. L., PLATON software, J. Appl. Cryst., 2003, 36, 7.27

Figure S4 : ORTEP view of complex 2a' with labeling scheme.

The ellipsoids enclose 50% of the electronic density.

55 Table S6 : Hydrogen bonds detected* in complex 2a'

Туре	DonorHAcceptor	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
Intra	O1H1N1	0.8397	1.8588	2.605(7)	147.34
Intra	O3H3ON3	0.8389	1.8436	2.587(6)	146.92
Intra	O1H1S2	0.8397	2.8459	3.568(6)	145.27
Intra	C21H21CO2\$2	0.9790	2.5735	3.095(7)	13.35
Inter	С9Н9АО3\$1	0.9909	2.4881	3.347(7)	144.87
Equival	ent position codes \cdot \$2 = 3/	$2 \times 1/2 \times 7 \cdot 9$	$1 = x + \frac{1}{2+z}$		

Equivalent position codes : 2 = 3/2-x, 1/2-y, -z; 1 = x, -y, -1/2+z

* Spek, A. L., PLATON software, J. Appl. Cryst., 2003, 36, 7.27

Table S7 : Main CH- π interactions* in complex 2a'.

Туре	XH(I) →Ring	HCentroid (Å)	X-HCentroid (°)	XCentroid (Å)		
Inter	C10-H10A→(C1/C6)\$1	3.0158	136.90	3.798(10)		
Inter	C19-H19A→(C1/C6)\$2	3.0530	159.86	3.998(11)		
Inter	C19-H19B→(C11/C16)\$3	3.2757	144.80	4.124(12)		
Inter	C20-H20A→(Cr/O4/N4)\$3	3.0589	108.84	3.507(9)		
Inter	C20-H20B→(Cr/O2/N2)\$2	3.1887	136.29	3.963(7)		
Inter	C20-H20B→(Cr/N3/N4)\$3	3.0268	111.12	3.507(9)		
Equivalent position codes : $1 = 3/2-x, -1/2-y, -z; $ $2 = x, -y, 1/2+z; $ $3 = 3/2-x, -1/2+y, 1/2-z$						

^o * Spek, A. L., PLATON software, J. Appl. Cryst., 2003, 36, 7.27

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S5: Frozen EPR spectrum of 1a measured at 4, 22, 36 and 75

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

65

Figure S6: Powder EPR spectrum of 1a measured at 4, 22, 41 and 70 K

Figure S7: Powder EPR spectrum of complex 2a measured at 4, 15, 50 and 293 K

Figure S8: Frozen solution EPR spectrum of 2a measured at 4, 15 K in CHCl₃.

70

Figure S9: Frozen solution EPR spectrum of 2b measured at 4, 15, 50, 293 K in CHCl₃

80

Figure S10. Temperature dependence of the integrated EPR susceptibility for compound 2b.

The continuous line is the fit to the theoretical expression of the spin susceptibility as explained in the literature.¹ The energy scheme of the resulting spin multiplets distribution is given. The singlet-triplet splitting is equal to $J=-28 \text{ cm}^{-1}$, as deduced from SQUID susceptibility (see main text).

¹ (a) Kambe, K., J. Phys. Soc. Jpn 1950, **5**, 48-51 ; (b) Thompson, M.; Connick, R. E. Inorg. Chem. 1981, **20**, 2279-2285.