Curious matrix effects: A computational, electron diffraction, and vibrational spectroscopic study of dysprosium triiodide

Zoltan Varga,^a Cornelis Petrus Groen,^{a,b} Mária Kolonits,^a and Magdolna Hargittai^a*

- a Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, P.O.Box 91, 1521 Budapest (Hungary)
- b Urenco Nederland B. V., P.O. Box 158, 7600 AD Almelo (The Netherlands) Email: hargittaim@mail.bme.hu

Electronic supplementary information (ESI)

Table S1 Electron diffraction molecular intensities for DyI₃ at the two camera ranges

Camera range= 19 cm

$s_{\min} = 8.75 \text{ Å}^{-1} s_{\max} = 27.25 \text{ Å}^{-1} \text{ step size} = 0.25 \text{ Å}^{-1}$							
			-115.1	89.9	262.1	300.8	163.2
1.1	-154.2	-243.7	-223.9	-84.8	81.3	183.3	219.8
135.8	16.9	-126.0	-187.9	-185.8	-49.9	47.1	146.5
154.9	98.3	30.4	-90.3	-145.4	-121.1	-23.1	48.0
90.0	93.5	74.6	8.4	-51.1	-88.1	-89.1	-31.9
11.2	54.9	92.8	59.0	20.5	-28.1	-83.1	-76.9
-24.7	-32.4	22.8	49.3	45.8	3.8	-19.8	-21.0
-39.7	-30.4	-20.3	-30.1	50.2	-1.3	41.8	-4.1
-19.7	-49.0	-33.8	-30.2	7.4	16.4	18.1	10.0
2.1	-4.3	-25.8	3.1	-7.2	4.4		

Camera range= 50 cm

$s_{\min} = 2$	2.00 Å ⁻¹ s	$s_{\rm max} = 14.0$)0 Å⁻¹ ste	ep size = ().125 Å ⁻¹		
-307.3	-251.8	-124.0	57.3	258.8	449.9	575.4	610.6
530.5	375.0	121.7	-128.5	-350.0	-500.9	-552.5	-536.2
-449.1	-305.1	-151.4	13.5	156.9	264.5	354.4	426.2
443.1	404.1	318.3	194.3	43.7	-109.8	-255.5	-361.9
-427.8	-431.2	-374.1	-284.1	-153.2	-15.1	127.6	248.1
343.4	372.4	381.8	332.0	236.6	144.5	28.7	-102.5
-225.1	-301.3	-338.9	-342.3	-303.0	-224.1	-127.4	-18.4
103.6	191.7	266.9	314.1	290.5	281.0	221.9	110.9
11.8	-89.8	-164.3	-232.4	-263.9	-272.6	-257.5	-184.0
-102.4	-12.1	72.8	154.3	196.2	250.1	214.0	193.3
165.5	81.7	2.8	-64.2	-140.0	-160.4	-193.6	-190.4
-194.7	-126.5	-64.8	-25.9	43.4	91.3	132.0	156.9
188.6							

symmetry mode		character ^a	MP2(FC)(Cundari)	IR (gas)
Ag	v_1	v_s Dy-I _t	184.4 (0)	
	v_2	v_s Dy-I _b	120.7 (0)	
	ν_3	$\beta_s I_b$ -Dy- I_b	56.5 (0)	
	ν_4	$\beta_s I_t$ -Dy- I_t	25.8 (0)	
A _u	v_5	$\delta_{as} I_t$ -Dy-I $_t$	22.1 (0)	
B _{1g}	ν_6	v_{as} Dy-I _t	199.9 (0)	
	ν_7	$\beta_{as} I_t$ -Dy-I $_t$	23.3 (0)	
B _{1u}	ν_8	v_{as} Dy-I _b	144.9 (23)	
	ν_9	$\delta_s I_t$ -Dy-I $_t$	24.8 (4)	
B _{2g}	v_{10}	v_{as} Dy-I _b	112.2 (0)	
	v_{11}	$\delta_{as} I_t$ -Dy-I $_t$	33.3 (0)	
B _{2u}	v_{12}	$v_{as} Dy-I_t$	202.1 (86)	
	v_{13}	ring puckering	37.7 (0)	
	v_{14}	Θ Dy-I _b -Dy-I _b	3.8 (0)	
B _{3g}	v_{15}	ring twist	27.5 (0)	
B _{3u}	v_{16}	v_s Dy-I _t	173.8 (86)	171
	v_{17}	v_{as} Dy-I _b	114.5 (16)	
_	v_{18}	$\beta_{as} I_t$ -Dy-I $_t$	33.9 (1)	

Table S2	Calculated and experimental harmonic vibrational frequencies (cm ⁻¹), with IR
intensities	(km mol^{-1}) in parentheses for Dy_2I_6

^a The symbols or abbreviations ν , β , δ , Θ , 's', and 'as' mean stretch, in-plane bend, outof-plane bend, torsion, symmetric and asymmetric, respectively. **Table S3** Calculated vibrational frequencies (cm⁻¹) and IR intensities (km mol⁻¹) in parentheses of $DyI_3 \cdot Ng_{a,b}$ (Ng = Ar, Kr, Xe; a and b = 0, 1, 3) matrices at MP2 (Stuttgart LC) level of theory.^a

Dyl ₃		$Dyl_3.Ar_{1,0}$	DyI_3 . $Ar_{1,1}$	DyI_3 . $Ar_{3,0}$	Dyl_3 . $Ar_{3,1}$	
	D_{3h}	C _{3v}	D_{3h}	C _{3v}	C _{3v}	
1	26.0 (12)	29.8 (0)	29.3 (1)	24.5 (0)	19.0 (0)	
2	35.2 (1)	29.8 (0)	29.3 (1)	24.5 (0)	19.0 (0)	
3	35.2 (1)	33.8 (9)	39.7 (0)	32.2 (0)	19.5 (4)	
4	142.0 (0)	36.8 (0)	39.7 (0)	35.0 (1)	23.3 (1)	
5	199.5 (46)	36.8 (0)	41.2 (0)	35.0 (1)	23.3 (1)	
6	199.5 (46)	96.1 (6)	41.2 (0)	40.5 (9)	32.9 (0)	
7		142.8 (1)	41.3 (12)	47.4 (0)	34.2 (1)	
8		197.2 (44)	77.4 (0)	47.4 (0)	34.2 (1)	
9		197.2 (44)	84.5 (11)	50.4 (2)	39.7 (9)	
10			139.7 (0)	54.5 (0)	47.1 (0)	
11			195.5 (44)	54.5 (0)	47.1 (0)	
12			195.5 (44)	66.7 (2)	49.0 (0)	
13				150.2 (6)	54.2 (0)	
14				191.4 (45)	54.2 (0)	
15				191.4 (45)	64.9 (1)	
16					148.4 (5)	
17					191.7 (45)	
18					191.7 (45)	

^a Italic style: normal vibrations of DyI₃ units

Table S3 continued

Dyl ₃		$Dyl_3.Kr_{1,0}$	Dyl ₃ .Kr _{1,1}	Dyl ₃ .Kr _{3,0}	Dyl ₃ .Kr _{3,1}	
	D_{3h}	C _{3v}	D_{3h}	C _{3v}	C_{3v}	
1	26.0 (12)	24.7 (0)	24.1 (0)	24.3 (0)	16.2 (0)	
2	35.2 (1)	24.7 (0)	24.1 (0)	24.3 (0)	16.2 (0)	
3	35.2 (1)	32.9 (8)	34.1 (0)	26.9 (0)	17.6 (2)	
4	142.0 (0)	36.0 (0)	34.1 (0)	33.6 (0)	24.9 (1)	
5	199.5 (46)	36.0 (0)	38.4 (0)	33.6 (0)	24.9 (1)	
6	199.5 (46)	81.3 (8)	38.4 (0)	39.8 (5)	27.8 (0)	
7		142.5 (2)	41.2 (9)	40.3 (0)	32.4 (1)	
8		196.7 (43)	59.6 (0)	40.3 (0)	32.4 (1)	
9		196.7 (43)	74.3 (17)	44.2 (5)	40.7 (0)	
10			139.0 (0)	45.3 (0)	40.7 (0)	
11			194.5 (42)	45.3 (0)	41.1 (1)	
12			194.5 (42)	54.4 (6)	42.4 (10)	
13				151.4 (8)	45.7 (0)	
14				189.4 (45)	45.7 (0)	
15				189.4 (45)	51.6 (3)	
16					149.3 (7)	
17					189.6 (44)	
18					189.6 (44)	

Table S3 continued

Dyl ₃		$Dyl_3.Xe_{1,0}$	$Dyl_3.Xe_{1,1}$	$\text{Dyl}_3.\text{Xe}_{3,0}$	$Dyl_3.Xe_{3,1}$	
	D_{3h}	C _{3v}	D_{3h}	C _{3v}	C_{3v}	
1	26.0 (12)	22.4 (0)	21.1 (1)	23.3 (0)	13.6 (0)	
2	35.2 (1)	22.4 (0)	21.1 (1)	23.3 (0)	13.6 (0)	
3	35.2 (1)	32.0 (7)	32.8 (0)	25.0 (0)	17.8 (1)	
4	142.0 (0)	35.7 (0)	32.8 (0)	31.2 (1)	24.6 (1)	
5	199.5 (46)	35.7 (0)	37.7 (0)	31.2 (1)	24.6 (1)	
6	199.5 (46)	76.7 (10)	37.7 (0)	35.4 (0)	25.7 (0)	
7		142.4 (2)	41.3 (7)	38.2 (0)	30.3 (1)	
8		195.8 (42)	51.1 (0)	38.2 (0)	30.3 (1)	
9		195.8 (42)	71.9 (24)	42.6 (0)	36.2 (0)	
10			137.8 (0)	42.6 (0)	39.0 (0)	
11			192.8 (40)	42.6 (2)	39.0 (0)	
12			192.8 (40)	52.4 (8)	43.0 (0)	
13				152.2 (11)	43.0 (0)	
14				186.6 (45)	43.1 (5)	
15				186.6 (45)	48.8 (9)	
16					150.5 (10)	
17					186.7 (43)	
18					186.7 (43)	

Table S4 Computed geometrical and vibrational parameters, and relative energies of the bending potential of DyI_3 at MP2(FC)(Cundari) level of theory

I–Dy–I (deg)	r (Å)	$\Delta E (\text{cm}^{-1})$	frequencies (cm ⁻¹)					
			v_1	ν_2	ν_3	ν_4	ν_5	ν_6
120.0	2.826	0.0	142.1	25.0	201.6	201.6	35.3	35.3
119.0	2.824	88.5	144.1	26.5	201.2	201.2	35.5	35.5
117.5	2.822	233.2	147.1	28.7	200.4	200.4	36.0	35.8
115.0	2.819	508.3	151.7	32.4	198.9	198.8	37.0	36.8
112.5	2.816	832.7	156.3	35.5	197.2	197.1	38.2	38.0
110.0	2.813	1210.4	160.7	38.6	195.6	195.4	39.5	39.4
105.0	2.809	2155.7	168.8	44.8	191.5	191.4	42.9	42.9
100.0	2.808	3418.9	175.8	52.2	186.4	186.4	47.5	47.5
90.0	2.816	7361.4	185.0	72.9	172.1	172.1	60.7	60.7