Supplemental Material

Synthesis, Characterization and Structures of Cyclic Organorhodium Complexes of the Type [Rh{CH(SO₂Ph)CH₂CH₂YR₂-κ*C*,κ*Y*}L₂] (YR₂ = PPh₂, NMe₂; L₂ = Diphosphine, Cyclooctadiene)

Michael Block, Christoph Wagner, Santiago Gómez-Ruiz and Dirk Steinborn

1. Preparation of Starting Materials

PhSO₂CH₂CH₂CH₂PPh₂ (1) was synthesized by conversion of NaPPh₂ with PhSO₂CH₂CH₂-CH₂Br¹ which was prepared according to a conventional method from KSPh and BrCH₂CH₂-CH₂Br² followed by oxidation with acetic acid/H₂O₂.³ The amino compound PhSO₂CH₂CH₂-CH₂Br² followed by oxidation of PhSCH₂CH₂CH₂NMe₂⁴ with acetic acid/H₂O₂. [{Rh(cod)}₂(μ -Cl)₂] (**5**) and [{Rh(C₂H₄)₂}₂(μ -Cl)₂] (**6**) were obtained according to established procedures.⁵ The dimeric Rh(I) complexes of the type of [{Rh(P^P)}₂(μ -Cl)₂] (P^P P = dmpe, **7a**; dppm **7b**; dppe **7c**; dppp, **7d**) were received by reaction of either [{Rh(cod)}₂(μ -Cl)₂] (**5**) or [{Rh(C₂H₄)₂}₂(μ -Cl)₂] (**6**) with the respective diphosphine in toluene.^{6,7} To avoid a predominant formation of the cationic bis(diphosphine)rhodium(I) complexes [Rh(P^P)₂]-Cl the addition of the diphosphine has to be performed slowely. Best results were obtained using complex **5** for synthesis of the dppe complex **7c** and using complex **6** for complexes **7a**, **7b** and **7d**. Whereas the dinuclear olefin complexes **5** and **6** are relatively air stable, the respective diphosphine complexes [{Rh(P^P)₂(μ -Cl)₂] (**7a**-**d**) are highly air and moisture sensitive and have to be stored under argon.

2. NMR Spectroscopic Data of Starting Materials

2.1. $PhSO_2CHCH_2CH_2PPh_2$ (1)

¹H NMR (400 MHz, CDCl₃): δ 1.83 (m, 2H, CH₂CH₂CH₂), 2.11 (m, 2H, CH₂PPh₂), 3.20 (m, 2H, CH₂SO₂Ph), 7.28–7.35 (m, 10H, PPh₂), 7.48–7.52 (m, 2H, *m*-H, SO₂Ph), 7.56–7.62 (m, 1H, *p*-H, SO₂Ph), 7.81–7.82 (m, 2H, *o*-H, SO₂Ph). ¹³C NMR (100 MHz, CDCl₃): δ 19.5 (d, ²J(¹³C, ³¹P) = 18.8 Hz, CH₂CH₂CH₂), 26.7 (d, ¹J(¹³C, ³¹P) = 12.5 Hz CH₂PPh₂), 56.7 (d, ³J(¹³C, ³¹P) = 13.6 Hz, CH₂SO₂Ph), 127.9–138.9 (m, C_{Ar}). ³¹P NMR (81 MHz, CDCl₃): δ – 16.4 (s, *P*Ph₂).

2.2. PhSO₂CHCH₂CH₂NMe₂ (3)

¹H-NMR (400 MHz, CDCl₃): δ 1.77–1.85 (m, 2H, CH₂CH₂CH₂), 2.07 (s, 6H, N(CH₃)₂), 2.24 (m, 2H, CH₂NMe₂), 3.09–3.13 (m, 2H, CH₂SO₂Ph), 7.48–7.52 (m, 1H, *m*-H, SO₂Ph), 7.56–7.61 (m, 1H, *p*-H, SO₂Ph), 7.84–7.86 (m, 2H, *o*-H, SO₂Ph). ¹³C-NMR (125 MHz, CDCl₃): δ 20.7 (s, CH₂CH₂CH₂), 45.0 (s, N(CH₃)₂), 54.0 (s, CH₂SO₂Ph), 57.2 (s, CH₂NMe₂), 127.9 (s, *o*-C, SO₂Ph), 129.2 (s, *m*-C, SO₂Ph), 133.6 (s, *p*-C, SO₂Ph), 139.2 (s, *i*-C, SO₂Ph).

2.3. [{Rh(cod)}₂(μ -Cl)₂] (5)

¹H NMR (400 MHz, CDCl₃): δ 1.71/2.46 (m/m, 8H/8H, CH₂), 4.18 (s, br, 8H, CH). ¹³C NMR (100 MHz, CDCl₃): δ 31.0 (s, CH₂), 78.7 (d, ¹J(¹³C, ¹⁰³Rh) = 13.8 Hz, CH).

2.4. $[{Rh(C_2H_4)_2}_2(\mu-Cl)_2]$ (6).

¹H NMR (200 MHz, THF- d_8): δ 3.10 (s, br, 16H, CH₂). ¹³C NMR (50 MHz, THF- d_8): δ 60.7 (s, br, CH₂).

2.5. $[{Rh(P P)}_{2}(\mu-Cl)_{2}]$ (7a–d)

P → P = dmpe (**7a**): ¹H NMR (400 MHz, CD₃NO₂): δ 1.41 (m, 24H, PCH₃), 1.51 ('d', N = 17.0 Hz, 8H, CH₂P). ¹³C NMR (50 MHz, CD₃NO₂): δ 16.2 ('t', N = 26.6 Hz, P(CH₃)₂), 29.2 ('t"d', N = 51.2/6.1Hz, CH₂PMe₂). ³¹P NMR (81 MHz, CD₃NO₂): δ 55.8 (d, ¹J(³¹P, ¹⁰³Rh) = 196.6 Hz, PMe₂).

P[•] P = dppm (7b): ¹H NMR (400 MHz, THF-*d*₈): δ 3.92 (td, ²*J*(¹H,³¹P) = 10.6 Hz, ³*J*(¹H,¹⁰³Rh) = 2.5 Hz, 4H, C*H*₂P), 7.15–7.30 (m, 24H, *m*-*H/p*-*H* PPh₂), 7.91–8.02 (m, 16H, *o*-*H* PPh₂). ¹³C NMR (100 MHz, THF-*d*₈): 51.2 (t, ¹*J*(¹³C, ³¹P) = 23.7 Hz, CH₂P), 131.3 ('t', *N* = 10.0 Hz, *o*-*C*, PPh₂), 132.4 (s, *p*-*C*, PPh₂), 135.9 ('t', *N* = 11.8 Hz, *m*-*C*, PPh₂), 139.6 ('t', *N* = 38.4 Hz, *i*-*C*, PPh₂). ³¹P NMR (81 MHz, THF-*d*₈): δ –27.4 (d, ¹*J*(³¹P, ¹⁰³Rh) = 169.0 Hz, *P*Ph₂). P[•] P = dppe (7c): ¹H NMR (400 MHz, THF-*d*₈): δ 2.00 ('d', *N* = 19.2 Hz, 8H, C*H*₂P), 7.19–7.43 (m, 24H, *m*-*H/p*-*H* PPh₂), 7.80–7.89 (m, 16H, *o*-*H* PPh₂). ¹³C NMR (100 MHz, THF-*d*₈): δ 28.9 ('t"d', *N* = 57.2/3.8 Hz, CH₂PPh₂), 128.3 (m, *m*-C, PPh₂), 129.6 (s, *p*-C, PPh₂), 134.1 (m, *o*-*C*, PPh₂), 137.6 (m, *i*-*C*, PPh₂). ³¹P NMR (81 MHz, THF-*d*₈): δ 73.6 (d, ¹*J*(³¹P,¹⁰³Rh) = 197.8 Hz, *P*Ph₂).

P → P = dppp (**7d**): ¹H NMR (400 MHz, THF-*d*₈): δ 1.73 (s, br, 4H, CH₂CH₂CH₂), 2.14 (s, br, 8H, CH₂PPh₂), 7.00–7.10 (m, 16H, *m*-H, PPh₂), 7.13–7.18 (m, 8H, *p*-H PPh₂), 7.65–7.69 (m, 16H, *o*-H PPh₂). ¹³C NMR (100 MHz, THF-*d*₈): 20.7 (s, br, CH₂CH₂CH₂), 29.3 (t, ²J(¹³C, ³¹P) = 19.6 Hz, CH₂PPh), 127.8 (s, br, *m*-C, PPh₂), 129.0 (s, *p*-C, PPh₂), 134.4 (s, br, *m*-C, PPh₂),

138.3 ('t', N = 42.0 Hz, *i*-*C*, PPh₂). ³¹P NMR (81 MHz, THF-*d*₈): δ 32.5 (d, ¹*J*(³¹P,¹⁰³Rh) = 212.8 Hz, *P*Ph₂).

References

- ¹ K. Sasse in *Houben-Weyl Methoden der Organischen Chemie*, Vol. XII/1, Thieme Verlag, Stuttgart, 1963, 17.
- ² H. Meerwein in *Houben-Weyl Methoden der Organischen Chemie*, Vol. XI/3, Thieme Verlag, Stuttgart, 1965, 1.
- ³ H. Kropf in *Houben-Weyl Methoden der Organischen Chemie*, Vol. IV/1a, Thieme Verlag, Stuttgart, 1981, 169.
- ⁴ M. Linnert, C. Bruhn, C. Wagner, M. Block, T. Rüffer, H. Schmidt and D. Steinborn, *Advances in Coordination, Bioinorganic and Inorganic Chemistry* (Eds. M. Melnik, J. Sima, M. Tatarko), STU Press, Bratislava, 2005, 170.
- ⁵ R. Cramer, *Inorg. Synth.*, 1990, **28**, 86.
- ⁶ D.P. Fairlie and B. Bosnich, Organometallics, 1988, 7, 936
- ⁷ P. Cao, B. Wang and X. Zhang, J. Am. Chem. Soc., 2000, **122**, 6490.