Lanthanide/actinide differentiation with sterically encumbered N-heterocyclic carbene ligands

Polly L. Arnold, *^a Zoë R. Turner,^a Anne I. Germeroth,^a Ian J. Casely,^a Ronan Bellabarba^b and Robert P. Tooze^b a. School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ, UK.b. Sasol Technology UK, Purdie Building, North Haugh, St Andrews, KY16 9SR, UK.

Supplementary information

(top) is a pure, isolated samples of $U(L^{D})N''_{2}$. (second) The reaction of UN''_{3} with HL^{D} : Crude $U(L^{D})N''_{2}$ is formed instantly. (third) The reaction of UN''_{3} with two equivalents of HL^{D} : Crude $U(L^{D})N''_{2}$ is formed instantly and then the reaction mixture decomposes over the course of a few days to afford (bottom) the ligand HL^{D} , HN'' and a few paramagnetic resonances (3 that persist and the rest are small in the base line across the spectral width 60 to -40 ppm). The colour changes from dark blue to clear green-brown in this time

Figure ESI.2. ¹H NMR spectra of reactions carried out in the attempt to make $U(L^D)_2N''$. (upper) The reaction of UN"₃ with three equivalents of HL^D: Crude $U(L^D)N''_2$ and HL^D are formed instantly, and then the reaction mixture decomposes over the course of a few days to afford (bottom) the ligand HL^{D} , HN'' and a few paramagnetic resonances. The colour changes from dark blue to clear green-brown in this time.

Figure ESI.3. ¹H NMR spectra of the reaction of U(L^D)N"₂ with HL^D: initially, crude U(L^D)N"₂ and HL^D only are observed (HL^D is shown in the upper inset). As above, the reaction mixture decomposes over the course of a few days to afford the ligand HL^D, HN" and a few small, unassignable paramagnetic resonances (spectrum not shown). The colour changes from dark blue to clear green-brown in this time.

X-ray Crystallographic details

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Experiments were carried out on crystals mounted on the end of a glass fibre in fomblin oil, at 150 K on a Bruker SMART APEX CCD area detector diffractometer, with Mo Ka radiation. Riding.

	$[Ce(L^M)N''_2]$	$[Ce(L^M)_2N'']$	$[Ce(L^{D})_{2}N"]$	$[U(L^M)_2I_2]$
Crystal data				
Chemical formula	$C_{33}H_{64}CeN_5OSi_4C_5H_5N$	$C_{38}H_{64}CeN_5O_2Si_2$	$C_{47}H_{79}CeN_5O_2Si_2$	$C_{32}H_{46}I_2N_4O_2U$
M _r	878.47	819.24	942.45	1010.56
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, P ⁻¹	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.1984 (6), 13.4476 (5), 22.0515 (9)	11.1139 (4), 18.0530 (6), 11.5188 (4)	19.9366 (6), 12.7554 (4), 20.3716 (6)	12.1805 (4), 12.0395 (4), 12.3962 (4)
α, β, γ (°)	90, 98.384 (2), 90	89.924 (2), 112.910 (2), 89.187 (2)	90, 92.147 (2), 90	90, 101.881 (2), 90
$V(\text{\AA}^3)$	4752.1 (3)	2128.54 (13)	5176.8 (3)	1778.92 (10)
Ζ	4	2	4	2
μ (mm ⁻¹)	1.09	1.16	0.96	6.33
Crystal size (mm)	$0.37 \times 0.31 \times 0.29$	$0.4 \times 0.2 \times 0.17$	$0.38 \times 0.25 \times 0.25$	$0.67 \times 0.45 \times 0.42$
Data collection				
Absorption correction	Multi-scan SADABS	Multi-scan SADABS	Multi-scan SADABS	Multi scan SADABS
T_{\min}, T_{\max}	0.535, 0.745	0.627, 0.820	0.609, 0.746	0.041, 0.069
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	30810, 9754, 7308	17055, 17055, 15887	66609, 14500, 11504	18933, 4693, 4138
R _{int}	0.064	0.0000	0.061	0.034
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.055, 0.132, 1.05	0.056, 0.132, 1.15	0.046, 0.097, 1.10	0.033, 0.075, 1.16
No. of reflections	9754	17055	14500	4693
No. of parameters	427	449	547	192
No. of restraints	6	0	48	0
$\Delta \geq_{\max}, \Delta \geq_{\min} (e \text{ Å}^{-3})$	0.99, -0.88	1.51, -1.83	1.38, -0.70	2.23, -0.83

Computer programs: SMART (Siemens, 1993); SAINT (Siemens, 1995); SIR-92 (Giacovazzo, 1994); SHELXL-97 (Sheldrick, 1997); ORTEP (Farrugia, 1997); enCIFer (Allen et al., 2004).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure ESI.4. Displacement ellipsoid (50 % probability) drawing for $[Ce(L^M)N''_2(NC_5H_5)]$ Hydrogen atoms and lattice pyridine molecule omitted for clarity.