Supporting Information

For

Synthesis, radii dependent self-assembly crystal structures and

luminescent properties of rare earth (III) complexes with a

tripodal salicylic derivative

Ya-Wen Wang, Yan-Ling Zhang, Wei Dou, Ai-Jiang Zhang, Wen-Wu Qin and Wei-Sheng Liu*

Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

Liuws@lzu.edu.cn

La(1)-O(8)	2.472(2)	La(1)-O(4)	2.519(2)	La(1)-O(12)	2.523(3)	La(1)-O(5)	#1 2.520(2)
La(1)-O(10)	2.535(3)	La(1)-O(13)	2.541(3)	La(1)-O(11)	2.593(3)	La(1)-O(7)	#1 2.618(2)
La(1)-O(8)#1	2.700(2)						
O(8)-La(1)-O(4	4) 78.9	95(8)	O(12)-La(1)-O(13)	73.80(9)	O(5)#1-La	a(1)-O(7)#1	84.78(8)
O(8)-La(1)-O(2	12) 148	.06(8)	O(5)#1-La(1)-O(13	3) 71.46(8)	O(10)-La	(1)-O(7)#1	143.08(8)
O(4)-La(1)-O(1	12) 75.	02(9)	O(10)-La(1)-O(13)	117.78(9)	O(13)-La	(1)-O(7)#1	76.68(9)
O(8)-La(1)-O(5	5)#1 69.1	39(7)	O(8)-La(1)-O(11)	85.03(8)	O(11)-La	(1)-O(7)#1	152.23(8)
O(4)-La(1)-O(5	5)#1 131	.64(8)	O(4)-La(1)-O(11)	120.68(9)	O(8)-La(1)-O(8)#1	70.85(8)
O(12)-La(1)- C	D(5)#1 142	2.54(8)	O(12)-La(1)-O(11)	92.53(10)	O(4)-La(1)-O(8)#1	65.66(7)
O(8)-La(1)-O(2	10) 75.	82(8)	O(5)#1-La(1)-O(11) 92.51(9)	O(12)-La	(1) - O(8)#1	113.37(9)
O(4)-La(1)-O(2	10) 69.9	93(8)	O(10)-La(1)-O(11)	50.77(9)	O(5)#1-La	a(1)-O(8)#1	69.81(8)
O(12)-La(1)-O	(10) 78.	07(9)	O(13)-La(1)-O(11)	76.27(9)	O(10)-La	(1) - O(8)#1	128.20(8)
O(5)#1-La(1)-0	O(10) 131	.30(8)	O(8)-La(1)-O(7)#1	119.27(7)	O(13)-La	(1) - O(8)#1	113.83(8)
O(8)-La(1)-O(2	13) 135	.47(8)	O(4)-La(1)-O(7)#1	79.85(8)	O(11)-La	(1) - O(8)#1	153.76(8)
O(4)-La(1)-O(2	13) 145	.03(8)	O(12)-La(1)-O(7)#	1 73.94(9)	O(7)#1-La	a(1)-O(8)#1	48.56(7)

Table S1 Representative bond lengths (Å) and angles (°) for $[La_2L_2(DMF)_4]$ ·4DMF·4EtOH·2H₂O

Symmetry transformations used to generate equivalent atoms:

#1 1–x, 1-y, 2-z

Table S2 Representative bond lengths (Å) and angles (°) for $[Eu_2L_2(DMF)_4]$ ·2DMF

Eu-O(7)	2.375(2)	Eu-O(4)	2.431(2)	Eu-O(11)	2.449(2)	Eu-O(8)#1	2.495(2)
Eu-O(10)	2.428(2)	Eu-O(13)	2.440(2)	Eu-O(12)	2.459(2)	Eu-O(7)#1	2.645(2)
Eu-O(5)#1	2.429(2)						
O(7)-Eu-O(1	10) 75.2	29(7)	O(5)#1-Eu-O(11)	87.96(8) C	D(4)-Eu-O(8)#1	80.25(7)
O(7)-Eu-O(5	5)#1 72.3	37(7)	O(4)-Eu-O(11)	124.11(7) C	D(13)-Eu-O(8)#1	74.74(8)
O(10)-Eu-O((5)#1 131.6	56(7)	O(13)-Eu-O(11)	93.26(8) C	D(11)-Eu-O(8)#1	49.86(7)
O(7)-Eu-O(4	4) 78.1	18(7)	O(7)-Eu-O(12)	139.05(8) C	D(12)-Eu-O(8)#1	75.12(8)
O(10)-Eu-O((4) 70.8	35(7)	O(10)-Eu-O(12)	115.41(8) C	D(7)-Eu-O(7)#1	71.26(7)
O(5)#1-Eu-O	D(4) 133.3	37(7)	O(5)#1-Eu-O(12)	72.34(7) C	D(10)-Eu-O(7)#1	29.19(7)
O(7)-Eu-O(1	145.8	38(7)	O(4)-Eu-O(12)	142.54(7) C	D(5)#1-Eu-O(7)#1	70.93(7)
O(10)-Eu-O((13) 75.8	80(8)	O(13)-Eu-O(12)	71.07(8) C	D(4)-Eu-O(7)#1	65.71(7)
O(5)#1-Eu-O	D(13) 141.6	66(8)	O(11)-Eu-O(12)	74.84(8) C	D(13)-Eu-O(7)#1	15.61(7)
O(4)-Eu-O(1	3) 75.5	50(8)	O(7)-Eu-O(8)#1	121.53(7) C	D(11)-Eu-O(7)#1	51.06(7)
O(7)-Eu-O(1	83.8	81(8)	O(10)-Eu-O(8)#1	142.87(8) C	D(12)-Eu-O(7)#1	15.00(7)
O(10)-Eu-O((11) 53.4	41(7)	O(5)#1-Eu-O(8)#1	85.25(8) C	D(8)#1-Eu-O(7)#1	50.33(6)

Symmetry transformations used to generate equivalent atoms:

#1 2-x, 1-y, 1-z

Table S3 Representative bond ler	ngths (Å) and angles (°)	for { $[GdL(DMF)(H_2O)_2]$ ·DMF} _∞
----------------------------------	--------------------------	---

Gd(1)-O(12) 2.378(5)) Gd(1)-O(13)	2.389(4)	Gd(1)-O(14)	2.399(4)	Gd(1)-O(8)#	1 2.411(5)
Gd(1)-O(1) 2.452(5)) Gd(1)-O(5)	2.473(5)	Gd(1)-O(7)#1	2.474(4)	Gd(1)-O(2)	2.491(5)
Gd(1)-O(4) 2.514(5))					
O(12)-Gd(1)-O(13)	82.4(2)	O(14)-Gd(1)-O(5)	124.56(1	8) O(8)#1	-Gd(1)-O(2)	78.53(16)
O(12)-Gd(1)-O(14)	83.99(19)	O(8)#1-Gd(1)-O(5) 147.87(1	8) O(1)-G	d(1)-O(2)	52.28(15)
O(13)-Gd(1)-O(14)	150.84(15)	O(1)-Gd(1)-O(5)	95.06(18	B) O(5)-G	d(1)-O(2)	73.43(17)
O(12)-Gd(1)-O(8)#1	126.45(18)	O(12)-Gd(1)-O(7)	#1 73.70(18	B) O(7)#1	-Gd(1)-O(2)	126.74(17)
O(13)-Gd(1)-O(8)#1	82.21(18)	O(13)-Gd(1)-O(7)	#1 78.09(16	6) O(12)-0	Gd(1)-O(4)	76.5(2)
O(14)-Gd(1)-O(8)#1	85.40(18)	O(14)-Gd(1)-O(7)	#1 73.38(16	6) O(13)-0	Gd(1)-O(4)	126.72(17)
O(12)-Gd(1)-O(1)	146.5(2)	O(8)#1-Gd(1)-O(7)#1 52.99(16	6) O(14)-0	Gd(1)-O(4)	74.15(16)
O(13)-Gd(1)-O(1)	125.98(16)	O(1)-Gd(1)-O(7)#	1 124.90(1	(7) O(8)#1	-Gd(1)-O(4)	147.88(18)
O(14)-Gd(1)-O(1)	76.94(16)	O(5)-Gd(1)-O(7)#	1 139.93(1	7) O(1)-G	d(1)-O(4)	71.95(18)
O(8)#1-Gd(1)-O(1)	79.56(17)	O(12)-Gd(1)-O(2)	143.27(1	8) O(5)-G	d(1)-O(4)	51.79(17)
O(12)-Gd(1)-O(5)	73.41(19)	O(13)-Gd(1)-O(2)	74.43(16	6) O(7)#1	-Gd(1)-O(4)	137.59(17)
O(13)-Gd(1)-O(5)	75.47(18)	O(14)-Gd(1)-O(2)	128.54(1	6) O(2)-G	d(1)-O(4)	94.94(17)

Symmetry transformations used to generate equivalent atoms:

#1 x, -y+3/2, z+1/2

Table S4 Representative bond	lengths (Å	Å) and angles (°) for {[TbL	$(DMF)(H_2O)_2]\cdot DMF\}_{\alpha}$
		-)) (1	$()^{()}$

Tb(1)-O(12) 2.359(3)	Tb(1)-O(13) 2.369(3)	Гb(1)-O(14)	2.388(3)	Tb(1)-O(8)#1 2.399(3)
Tb(1)-O(1) 2.436(3)	Tb(1)-O(5)	2.466(3)	Гb(1)-O(7)#1	2.471 (3)	Tb(1)-O(2) 2.479(3)
Tb(1)-O(4) 2.504(3))					
O(12)-Tb(1)-O(13)	82.23(13)	O(14)-Tb(1)-O(5)	124.32(11)) O(8)#1-7	Tb(1)-O(2)	78.03(11)
O(12)-Tb(1)-O(14)	83.46(13)	O(8)#1-Tb(1)-O(5)	147.53(11)) O(1)-Tb((1)-O(2)	52.46(10)
O(13)-Tb(1)-O(14)	150.48(10)	O(1)-Tb(1)-O(5)	95.18(13)	O(5)-Tb((1)-O(2)	73.63(12)
O(12)-Tb(1)-O(8)#1	126.74(11)	O(12)-Tb(1)-O(7)#1	73.79(12)	O(7)#1-7	Tb(1)-O(2)	126.55(11)
O(13)-Tb(1)-O(8)#1	82.15(13)	O(13)-Tb(1)-O(7)#1	77.86(10)	O(12)-Th	o(1)-O(4)	76.18(13)
O(14)-Tb(1)-O(8)#1	86.00(12)	O(14)-Tb(1)-O(7)#1	73.40(10)	O(13)-Th	o(1)-O(4)	127.05(11)
O(12)-Tb(1)-O(1)	146.13(12)	O(8)#1-Tb(1)-O(7)#	1 53.20(10)	O(14)-Tł	o(1)-O(4)	73.54(11)
O(13)-Tb(1)-O(1)	126.59(10)	O(1)-Tb(1)-O(7)#1	124.78(11)) O(8)#1-7	ſb(1)-O(4)	147.78(12)
O(14)-Tb(1)-O(1)	76.98(11)	O(5)-Tb(1)-O(7)#1	139.94(11)) O(1)-Tb((1) - O(4)	71.91(12)
O(8)#1-Tb(1)-O(1)	79.49(12)	O(12)-Tb(1)-O(2)	143.55(12)) O(5)-Tb((1) - O(4)	52.20(10)
O(12)-Tb(1)-O(5)	73.42(13)	O(13)-Tb(1)-O(2)	74.82(10)	O(7)#1-7	ſb(1)-O(4)	137.21(11)
O(13)-Tb(1)-O(5)	75.49(11)	O(14)-Tb(1)-O(2)	128.77(10)) O(2)-Tb((1) - O(4)	95.44(11)

Symmetry transformations used to generate equivalent atoms:

#1 x, -y+3/2, z+1/2

Y(1)-O(12)	2.337(4)) Y(1)-O(13) 2.331(4)	Y(1)-O(14)	2.358(4)	Y(1)-O(8)#	1 2.369(4)
Y(1)-O(1)	2.411(4)) Y(1)-O(5)	2.438(4)	Y(1)-O(2)	2.457(4)	Y(1)-O(7)#	1 2.463(4)
Y(1)-O(4)	2.482(4))					
O(13)-Y(1)-	O(12)	82.02(16)	O(14)-Y(1)-O(5)	124.75(15) O(8)#1-Y	(1)-O(7)#1	53.88(13)
O(13)-Y(1)-	O(14)	149.86(13)	O(8)#1-Y(1)-O(5)	146.73(15) O(1)-Y(1)) - O(7)#1	124.45(15)
O(12)-Y(1)-	O(14)	83.51(16)	O(1)-Y(1)-O(5)	95.48(16)	O(5)-Y(1)) - O(7)#1	139.98(15)
O(13)-Y(1)-	O(8)#1	81.87(15)	O(13)-Y(1)-O(2)	74.93(14)	O(2)-Y(1)) - O(7)#1	126.47(15)
O(12)-Y(1)-	O(8)#1	127.44(15)	O(12)-Y(1)-O(2)	143.33(15) O(13)-Y(1) - O(4)	127.80(15)
O(14)-Y(1)-	O(8)#1	86.23(15)	O(14)-Y(1)-O(2)	129.07(14) O(12)-Y(1) - O(4)	76.16(16)
O(13)-Y(1)-	O(1)	127.25(14)	O(8)#1-Y(1)-O(2)	77.31(14)	O(14)-Y(1)-O(4)	73.25(15)
O(12)-Y(1)-	O(1)	145.97(16)	O(1)-Y(1)-O(2)	53.10(13)	O(8)#1-Y	(1) - O(4)	147.27(15)
O(14)-Y(1)-	O(1)	76.66(14)	O(5)-Y(1)-O(2)	73.39(15)	O(1)-Y(1))-O(4)	71.80(15)
O(8)#1-Y(1)	-O(1)	78.91(15)	O(13)-Y(1)-O(7)#	1 77.50(13)	O(5)-Y(1))-O(4)	52.90(14)
O(13)-Y(1)-	O(5)	75.64(15)	O(12)-Y(1)-O(7)#	1 73.85(15)	O(2)-Y(1))-O(4)	95.88(15)
O(12)-Y(1)-	O(5)	73.50(16)	O(14)-Y(1)-O(7)#	1 73.12(14)	O(7)#1-Y	(1) - O(4)	136.81(15)

Table S5 Representative bond lengths (Å) and angles (°) for $\{[YL(DMF)(H_2O)_2] \cdot DMF\}_{\infty}$

Symmetry transformations used to generate equivalent atoms:

#1 x, -y+3/2, z+1/2

		λ_{\max}^{a}/nm	RFI/a.u.	τ/ms	$arPsi^b$ (%)
L	Eu	579	57		
		591	100		
		614	259	0.374	1.32
	Tb	491	2194		
		545	7413	1.07	43.47
		584	484		
		620	184		
^a Excitati	on and emission	passes = 2.5 nm.^{b}	Luminescence lif	fetimes and quar	ntum yield values
are report	ted here with an e	error of $\pm 10\%$.		-	

Table S6 Photophysical characterization of the europium and terbium complexes

Fig. S1 The room-temperature solid-state phosphorescence lifetime of Eu³⁺ complex.

Fig. S2 The room-temperature solid-state phosphorescence lifetime of Tb^{3+} complex.

UV-Vis Spectrum of Ligand.

The Uv-Vis absorption spectrum of the free ligand **LH**₃ (Figure S3) was measured in DMF solution ($c = 1.0 \times 10^{-4}$ M). The maximum absorption band at 292 nm is attributed to singlet-singlet π - π * salicylic acid group absorption of the ligand. The molar absorption coefficient (ε) is calculated as 8.6×10^3 L \cdot mol⁻¹ \cdot cm⁻¹, revealing that the ligand has a strong ability of absorbing light and thus favor efficient antenna effect, making them potential candidates as sensitizing compound for lanthanide luminescence. A weak band at 262 nm is also evident, which is the absorption of DMF.

Fig. S3 Absorption spectra of LH₃ in DMF $(1.0 \times 10^{-4} \text{ M})$.

Fig. S4 Phosphorescence spectrum of Gd^{3+} complex excited at 300 nm at 77K.