Electronic structure alternatives in nitrosylruthenium complexes

Goutam Kumar Lahiri^{*} and Wolfgang Kaim^{*}

Electronic Supporting Information

Complex	g 1	<i>g</i> ₂	<i>g</i> ₃	g_{av}	Δ_{g}	A_1	<i>A</i> ₂	A_3	Ref.
$\left[(py)_4(NH_3)Ru(NO)\right]^{2+b}$	2.0215	1.9875	1.878	1.963	0.1435	n.o.	3.0	n.o.	18
$[(py)_4(SCN)Ru(NO)]^{+b}$	2.0225	1.9895	1.877	1.963	0.1455	n.o.	2.9	n.o.	18
$[(py)_4ClRu(NO)]^{+b}$	2.025	1.990	1.886	1.967	0.139	n.o.	3.1	n.o.	18
$[(py)_4ClRu(NO)]^+ c$	2.033	1.989	1.874	1.965	0.159	1.51	3.18	1.07	21
$[(py)_4(OH)Ru(NO)]^{+b}$	2.0235	1.991	1.886	1.967	0.1375	n.o.	3.2	n.o.	18
$\left[(bpy)_2(CH_3CN)Ru(NO)\right]^{2+b}$	2.028	1.9925	1.882	1.968	0.146	n.o.	3.3	n.o.	18
$[(bpy)_2 ClRu(NO)]^{+b}$	2.029	1.992	1.881	1.968	0.148	n.o.	3.2	n.o.	18
$[(terpy)(bpy)Ru(NO)]^{2+b}$	2.0175	1.998	1.883	1.967	0.1345	n.o.	3.4	n.o.	18
$[(terpy)(bpz)Ru(NO)]^{2+b}$	2.0215	1.999	1.886	1.969	0.1355	n.o.	3.4	n.o.	18
$[(NC)(py)_4Ru(\mu-CN)(py)_4Ru(NO)]^{2+c}$	2.024	1.990	1.865	1.960	0.159	1.55	3.39	0.97	21
$[(cyclam)ClRu(NO)]^{+d}$	2.035	1.995	1.883	1.971	0.152	1.7	3.21	1.5	46
[(bpydip)ClRu(NO)] ⁺ e	2.027	1.991	1.889	1.969	0.138	1.69	3.23	1.48	47
$[(dppe)_2 ClRu(NO)]^+ g$	2.011	1.976	1.867	1.951	0.144	1.71	1.85 ^f	1.43	46(<i>b</i>)
$[(depe)_2 ClRu(NO)]^{+d}$	2.010	1.984	1.888	1.961	0.122	1.8	3.5	1.9	46(<i>b</i>)
$\left[(\mathrm{NC})_{5}\mathrm{Ru}(\mathrm{NO})\right]^{3-h}$	2.004	2.002	1.870	1.959	0.134	n.o.	3.8	n.o.	48
$\left[(\mathrm{Ph}_{3}\mathrm{P})_{2}(\mathrm{C}_{5}\mathrm{Me}_{5})\mathrm{Ru}(\mathrm{NO})\right]^{+i}$	2.0115	1.983	1.900	1.965	0.111	1.63	2.10 ^f	2.29	49
	1.995	1.995	1.896	1.962	0.099	n.o.	2.85	n.o.	49 ^{<i>j</i>}

Table S1 EPR spectroscopic data^a of selected nitrosylruthenium complexes; n.o. not

observed

2

$\left[(PhMe_2P)_2(C_5Me_5)Ru(NO)\right]^{+i}$	2.000	1.998	1.915	1.970	0.085	1.06	3.38	1.07	49
	1.996	1.996	1.964 ^f	1.985 ^f	0.032 ^f	n.o.	3.25	n.o.	49 ^{<i>j</i>}
$\left[(\mathrm{Me}_{3}\mathrm{P})_{2}(\mathrm{C}_{5}\mathrm{Me}_{5})\mathrm{Ru}(\mathrm{NO})\right]^{+i}$	2.007	2.002	1.918	1.976	0.089	1.15	3.37	1.20	49
	2.001	1.994	1.912	1.969	0.089	0.6	3.3	1.3	49 ^{<i>i</i>}
$[\mathrm{HCl}(\mathrm{OC})(\mathrm{P}i\mathrm{Pr}_3)_2\mathrm{Ru}(\mathrm{NO})]^k$	2.006	1.993	1.910	1.970	0.096	n.o.	3.45	n.o.	50
$\left[\text{DCl(OC)}(\text{P}i\text{Pr}_3)_2\text{Ru(NO)}\right]^k$	2.001	1.994	1.910	1.968	0.091	n.o.	3.45	n.o.	50
$[(bpy)(tpm)Ru(NO)]^{2+m}$	2.031	1.990	1.886	1.969	0.145	n.v.	3.2	n.v.	13
$[(trpy)(L)Ru(NO]^{2+l}$	2.020	1.995	1.884	1.966	0.136	n.o.	3.0	n.o.	7
[(bpym)(trpy)Ru(NO)] ²⁺	2.021	1.995	1.885	1.967	0.136	n.o.	3.4	n.o.	45
[(TPP)(py)Ru(NO)]•	2.036	1.985	1.880	1.967	0.156	n.o.	3.3	n.o.	8
$\left[ClRu(py)_4(CN)Ru(py)_4(CN)Ru(py)_4Ru(NO)\right]^{3+}$	2.028	1.990	1.862	1.960	0.166	n.o.	3.3	n.o.	2
a^{14} N hyperfine coupling A in mT. ^b In CH ₃ CN/0).1 M B	u ₄ NPF ₆ ,	measu	red at 11	0 K. ^c 1	n CH	[₃ CN/0	.1 M E	Bu ₄ NPF ₆ ,
measured at 10 K. ^{d} In ethylene glycol + 30% H	₂ O, mea	sured at	77 K; o	eyclam =	= 1,4,8,1	1-teti	raazacy	clotetr	adecane;
depe = $1,2$ -bis(diethylphosphanyl)-ethane. ^{<i>e</i>} In	CH ₃ C	N, meas	sured a	t 110 k	K; bpyd	lip =	N,N [/] -	bis(7-n	nethyl-2-
pyridylmethylene)-1,3-diiminopropane. ^f Probabl	ly erron	eous va	lue. ^g I	n CH ₂ C	l ₂ , meas	sured	at 77	K; dpp	be = 1,2-
bis(diphenylphosphanyl)ethane. ^h In CH ₃ CN/0.1	M Bu ₄ N	NPF_6 , mo	easured	at 3.5 K	. ⁱ In Cl	H ₂ Cl ₂	, meas	ured at	113 K. ^j

In acetone, measured at 100 K. ^{*k*} In toluene, measured at 77 K. Additional ¹H hyperfine coupling observed at about 3.5 mT. ^{*l*} L = 2-phenylimidazo[4,5-*f*]-1,10-phenanthroline. ^{*m*} tpm = tris(1-pyrazolyl)methane.

Fable S2 Selected nitrosy	l stretching free	quencies v(NO) o	f various complexes
----------------------------------	-------------------	------------------	---------------------

Compound	$v_{\rm NO}^+$ / cm ⁻¹	$v_{\rm NO}^{\bullet}$ / cm ⁻¹	$v_{\rm NO}^{-1}$	Ref.
$[Ru^{II}(NO^{+})(Q^{\bullet-})(trpy)](PF_{6})_{2}$	1900	-	-	1
$[Ru^{II}(NO^{+})(Q^{2-})(trpy)]^{+}$	1830 (CH ₃ CN)	-	-	
trans-[ClRu ^{II} (py) ₄ (NC)Ru ^{II} (py) ₄	1919	-	-	2
$(CN)Ru^{II}(py)_4(NO^+)](PF_6)_4$				
[RuII(trpy)(bik)(NO+)](ClO4)3	1951	1630	-	3
[((OMe) ₂ bQb)Ru ^{II} (NO ⁺)(Thnl)]	1847	-	-	4
$[((OMe)_2bQb)Ru^{II}(NO^+)(Seln)]$	1847	-	-	
[(Me ₂ bpb)Ru ^{II} (NO ⁺)(OH)]	1828	-	-	5
[(Me ₂ bpb)Ru ^{II} (NO ⁺)(Resf)]	1841	-	-	
$[(Me_2bQb)Ru^{II}(NO^+)(Resf)]$	1847	-	-	
$[(Me_2bQb)Ru^{II}(NO^+)(OH)]$	1837	-	-	
$[(Me_2bQb)Ru^{II}(NO^+)Cl]$	1829	-	-	
[((OMe),bOb)Ru ^{II} (NO ⁺)(OH)]	1852	-	_	
$[(Me_2bOb)Ru^{II}(NO^+)(Resf)]$	1848	-	_	
$syn-{(\mu-bpym-(4-OH)) [RuII(NO+)]}$	1946	-	-	6
$(trpy)]_{2} \{ (PF_{6})_{5} \}$				
[RuII(trpy)(pip)(NO+)](CIO4)3	1948	1634	-	7
$[(TPP^{\bullet})Ru^{II}(NO^{+})(H_2O)]^{2+}$	1902	-	-	8
$[(TPP^{2-})Ru^{II}(NO^{+})(H_2O]BF_4$	1875	-	_	
$[(TPP^{2-})Ru^{II}(NO^{+})(Pv)]BF_{2}$	1903	-	_	
$[(\mathbf{TPP}^{2-})\mathbf{Ru}^{\mathbf{II}}(\mathbf{NO}^{\bullet})(\mathbf{Pv})]$	_	1584	_	
$[(OFP^{\bullet})Ru^{III}(NO^{+})(H_{2}O)]^{3+}$	1950	_	_	
$[(OEP^{\bullet})Ru^{II}(NO^{+})(H_2O)]^{2+}$	1895	_	_	
$[(OEP^{2-})Ru^{II}(NO^{+})(H_{2}O)]BE_{4}$	1877	_	_	
$[(OEP^{2-})Ru^{II}(NO^{+})(Pv)]BE_{4}$	1876	_	_	
$[(OED^{2})Pu^{ii}(NO^{\bullet})(Pv)]$	-	1568		
$\frac{[(OEI -)Ku (NO)(1 y)]}{[RuII(trpy)(pdt)(NO+)](CIO4)2}$	1944	1633	-	9
$[(SBPv_3)Ru^{II}(NO^+)](BF_4)_3$	1920			10
$[(Pv_2P)Ru^{II}(NO^+)]BF_4$	1877		L	
$[(PaPv_2)Ru^{II}(NO^+)](RF_4)_{-}$	1899		Ļ	
$[(Pv_3P)Ru^{II}(NO^+)C]]$	1862	-	-	
$[(Papy_2Q)RuII(NO+)](BF_4)_2$	1868	-	-	11
$[Ru^{II}(Me_2bpb)(NO^+)(4-vpy)]BF_4$	1872	-	F	12
$[Ru^{II}(bpy)(tpm)NO^{+}](CIO_{4})_{3}$	1959	-	-	13

$[Ru^{II}(trpy)(L^{1-4})(NO^{+})](X)_{3}$				14
$L^{1} = 2-(2-pyridyl)benzoxazole$	L ¹ 1957	-	-	
$L^2 = 2-(2-pyridyl)$ benzthiazole	L^{2} 1941	-	-	
$L^3 = 2-(2-pyridyl)$ benzimidazole	L^{3} 1940	-	-	
$L^4 = 1$ -methyl-2-(2-pyridyl)-1 <i>H</i> -	L ⁴ 1932	-	F	
benzimidazole				
$X = C I O_4^{-1}$ for $L^1 L^2 L^4 \cdot X = N O_3^{-1}$ for L^3				
[RuII(trpy)(dpk)(NO+)](C104)3	1949	1666 (CH ₃ CN)	-	15
[RuII(trpy)(L)(NO+)](Cl04)3	1945	1830 (CH ₃ CN)	-	16
L = 2,2'-dipyridylamine				
$K_2[Cl_5Ru''(NO')]$	1843 (<i>n</i> -PrCN)	-	-	17
$[Cl_5Ru^{III}(NO^{-})]^{-}$	1922 (<i>n</i> -PrCN)		-	
$[(trpy)(bpz)Ru^{II}(NO^{+})](PF_{6})_{3}$	1957	-	-	18
$trans-[(py)_4(SCN)Ru^{II}(NO^+)](PF_6)_2$	1902	-	-	
$[Ru^{II}(NH_3)_5(NO^+)](PF_6)_3$	1913	-	-	19
[RuII(Papy3)(NO+)](BF4)2	1899	-	-	20
$trans-[(NC)Ru^{II}(py)_4(CN)Ru^{II}(py)_4(NO)](PF_6)_3$	1917 (CH ₃ CN)	1626 (CH ₃ CN)	-	21
$trans-[(NC)Ru^{III}(py)_4(CN)Ru^{II}(py)_4(NO^+)]^{4+}$	1952 (CH ₃ CN)		-	
$[Ru^{II}(TPP^{2-})(NO^{+})(ONO)]$	1844	-	-	22
$[Ru^{II}(NCS)(NO^{+})(bpy)(py)_{2}](PF_{6})_{2}$	1925	-	-	23
$[Ru^{II}(trpy)(L)(NO^{+})][C10_{4}]_{3}$	1960	-	-	24
$L = NC_5H_4N = NC_6H_4(R),$	1953	-	-	
$\mathbf{R} = \mathbf{H} / \boldsymbol{m} \cdot \mathbf{M} \mathbf{e} / \boldsymbol{m} \cdot \mathbf{C} \mathbf{l} / \boldsymbol{p} \cdot \mathbf{M} \mathbf{e} / \boldsymbol{p} \cdot \mathbf{C} \mathbf{l}$	1952	-	-	
	1955	-	-	
	1957	-	-	25
$[Ru^{-}(NO)(trpy)Cl_2](PF_6)$	1893			23
$[Ru_{II}^{II}(OH)(NO_2)(NO_1^{-1})(trpy)](PF_6)$	1870		[
$[Ru_{II}^{"Cl(OCH_3)(NO^{+})(trpy)](PF_6)$	1916	_		
$[Ru^{H}Br_{2}(NO^{+})(trpy)](PF_{6})$				•
$[(OEP^{2^{-}})Ru^{(NO^{+})}(p-C_{6}H_{4}F)]$	1759	-	-	26
$[(TTP^{2^{-}})Ru^{''}(NO^{'})(p-C_6H_4F)]$	1773	-		27
$\operatorname{Ru}^{I}(\operatorname{salen})(\operatorname{Cl})(\operatorname{NO}^{T})$	1844 (CH ₂ CI ₂)	-	-	28
K[Ru ^{II} (hedta)(NO [•]]	-	1858	-	29
[Ru ^{II} (hedta)(NO)]	1846	-	-	
K _z [Ru ^{II} (hedta)(NO ⁻)]	-	-	1383	
$[(OEP^{2-})Ru^{II}(NO^{+})(OH_{2})](BF_{4})$	1852	-	-	30
[Ru ^{II} (FTTP)(NO ⁺)(ONO)]	1847 (C ₆ H ₁₂)	-	-	31
$[RuII(TTP^{2-})(NO^{+})(ONO)]$	1841	ŀ	F	
$(OEP^{2-})Ru^{II}(NO^{+})(CI)$	1827	F	F	
$[(OEP^{2-})Ru^{II}(NO^{+})(OH)]$	1804	+		32

$Na_2[Ru^{II}(CN)_5(NO^+)]$	1926	-	-	33
$[{\rm Ru}^{\rm II}({\rm Cp})({\rm NO}^+)({\rm PPh}_3)_2]({\rm PF}_6)_2$	1860	-	-	34
$[Ru^{II}(trpy)(bpy)(NO^{+})]^{3+}$	1952 (CH ₃ CN)	-	-	35
$Ru^{II}Cl_3(NO^+)(PMePh_2)$	1876	-	-	36
$[Ru^{II}(NH_3)_5(NO^+)]Cl_3$	1913	-	-	
$[Ru^{II}Cl_3(H_2O)_2(NO^+)]$	1895	-		
NH ₄ [Ru ^{III} (NO ⁺)Cl ₅]	1900	-	-	37
$[Ru^{I}(NO^{+})Cl_{2}(PPh_{3})_{2}]$	1868	-	-	
$[(bpy)_2Ru^{II}(NO^+)N_3](PF_6)_2$	1923 (CH ₃ CN)	-	-	38
[(bpy) ₂ Ru ^{II} (NO [•])Cl]I	-	1611	-	
$[(bpy)_2Ru^{II}(NO^+)NO_2](PF_6)_2$	1948 (CH ₃ CN)	-	-	
$[(bpy)_2Ru^{II}(NO^+)NH_3](PF_6)_3$	1950 (CH ₃ CN)	-		
$[(bpy)_2Ru^{II}(NO^+)py](PF_6)_3$	1953 (CH ₃ CN)	-	-	
$[(bpy)_2 Ru^{II}(NO^+)(CH_3 CN)] (PF_6)_3$	1956	-	-	
$[(bpy)_2 Ru^{II}(NO^{\bullet})(CH_3 CN)](PF_6)_2$	-	1655	-	
$[Ru0(\mu-PPh2)(NO)(L)]_{z}$				39
L=PmePh ₂	1625	-	-	
$L=PPh_3$	1640	-	-	
$[RuIICl(bpy)_2(NO+)](PF_6)_2$	1931 ((CH ₃) ₂ CO)	-	-	40
$[Ru^{0}(NO^{+})(H^{-})(PPh_{3})_{3}]$	1640	-	-	41
$[\operatorname{Ru}^{0}(\operatorname{NO}^{+})(\operatorname{diphos})_{2}]B(C_{6}H_{5})_{4}$	1673	-	-	
$[Ru^{II}(OH)(NO^{+})(NO^{\bullet})(PPh_{3})_{2}]BF_{4}$	1870 (nujol)	1665 (nujol)	-	42
$[Ru^{II}C1(NO^{+})(NO^{\bullet})(PPh_{3})_{2}]PF_{6}$	1845	1687	-	43
$Na_{2}[Ru^{II}(NO^{+})(NO_{2})_{4}(OH)]$	1893	-	-	44
$[Ru^{II}(NO^{+})(NH_{3})_{4}(OH)]Cl_{2}$	1834	-		

Table S2

Q = 4,6-di-*tert*-butyl-*N*-phenyl-*o*-iminobenzoquinone py = pyridine trpy = 2,2':6',2"-terpyridine bik = 2,2'-bis(1-methylimadazolyl)ketone H₂(OMe)₂bQb =

Thnl = thionol Seln = selenophore H₂Me₂bpb =

Resf = Resorufin bpym = 2,2'-bipyrimidine pip = 2-Phenylimidazo[4,5-*f*]1,10-phenanthroline TPP²⁻ = *meso*-tetraphenylporphyrin dianion $OEP^{2-} = octaethylporphyrin dianion$ pdt = 5,6-diphenyl-3-pyridyl-as-triazine $SBPy_3 = N, N$ -bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-aldimine $Py_3PH_2 = N, N$ -bis(2-(2-pyridyl)ethyl)pyridine-2,6-dicarboxamide $PaPy_3H = N, N$ -bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide $Papy_2QH = N$, N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinaldine-2-carboxamide 4-vpy = 4-vinylpyridine bpy = 2,2'-bipyridinetpm = tris(1-pyrazolyl)methanedpk = 2,2'-dipyridyl ketone bpz = 2,2'-bipyrazine $TTP^{2-} = meso$ -tetratolylporphyrinato dianion Salen = N, N'-bis-(salicylidene)ethylenediaminate hedta³⁻ = *N*-(hydroxyethyl)ethylenediaminetriacetate $FTTP^{2-} = [tetra(m-trifluoromethylphenyl)porphyrin$ Cp = cyclopentadienyldiphos = 1,2-bis(diphenylphosphino)ethane

Referentes

1	A. K. Das, B. Sarkar, C. Duboc, S. Strobel, J. Fiedler, S. Za'lis', G. K. Lahiri and W.
	Kaim, Angew. Chem. Int. Ed., 2009, 48, 4242.
2	A. G. De Candia, P. Singh, W. Kaim and L. D. Slep, Inorg. Chem., 2009, 48, 565.
3	P. De, B. Sarkar, S. Maji, A. K. Das, E. Bulak, S. M. Mobin, W. Kaim and G. K.
	Lahiri, Eur. J. Inorg. Chem., 2009, 2702.
4	M. J. Rose and P. K. Mascharak, Inorg. Chem., 2009, 48, 6904.
5	M. J. Rose, N. L. Fry, R. Marlow, L. Hinck and P. K. Mascharak, J. Am. Chem. Soc.,
	2008, 130 , 8834.
6	P. Singh, M. Sieger, J. Fiedler, CY. Su and W. Kaim, Dalton Trans., 2008, 868.
7	S. Maji, B. Sarkar, M. Patra, A. K. Das, S. M. Mobin, W. Kaim and G. K. Lahiri, Inorg.
	<i>Chem.</i> , 2008, 47 , 3218.
8	P. Singh, A. K. Das, B. Sarkar, M. Niemeyer, F. Roncaroli, J. A. Olabe, J. Fiedler, S.
	Zalis and W. Kaim, Inorg. Chem., 2008, 47, 7106.
9	S. Maji, C. Chatterjee, S. M. Mobin and G. K. Lahiri, Eur. J. Inorg. Chem., 2007, 3425.
10	M. J. Rose, A. K. Patra, E. A. Alcid, M. M. Olmstead and P. K. Mascharak, Inorg.
	<i>Chem.</i> , 2007, 46 , 2328.
11	M. J. Rose, M. M. Olmstead and P. K. Mascharak, Polyhedron, 2007, 26, 4713.
12	G. M. Halpenny, M. M. Olmstead and P. K. Mascharak, Inorg. Chem., 2007, 46, 6601.
13	M. Videla, J. S. Jacinto, R. Baggio, M. T. Garland, P. Singh, W. Kaim, L. D. Slep and
	J. A. Olabe, Inorg. Chem., 2006, 45, 8608.
14	N. Chanda, D. Paul, S. Kar, S. M. Mobin, A. Datta, V. G. Puranik, K. K. Rao and G. K.
	Lahiri, Inorg. Chem., 2005, 44, 3499.

- 15 S. Sarkar, B. Sarkar, N. Chanda, S. Kar, S. M. Mobin, J. Fiedler, W. Kaim and G. K. Lahiri, *Inorg. Chem.*, 2005, 44, 6092.
- 16 N. Chanda, S. M. Mobin, V. G. Puranik, A. Datta, M. Niemeyer and G. K. Lahiri, *Inorg. Chem.*, 2004, 43, 1056.
- M. Sieger, B. Sarkar, S. Záliš, J. Fiedler, N. Escola, F. Doctorovich, J. A. Olabec and
 W. Kaim, *Dalton Trans.*, 2004, 1797.
- S. Frantz, B. Sarkar, M. Sieger, W. Kaim, F. Roncaroli, J. A. Olabe and S. Za'lis, *Eur. J. Inorg. Chem.*, 2004, 2902.
- S. da S. S. Borges, C. U. Davanzo, E. E. Castellano, J. Z- Schpector, S. C. Silva and D.
 W. Franco, *Inorg. Chem.*, 1998, **37**, 2670.
- 20 A. K. Patra and P. K. Mascharak, *Inorg. Chem.*, 2003, **42**, 7363.
- 21 F. Roncaroli, L. M. Baraldo, L. D. Slep and J. A. Olabe, *Inorg. Chem.*, 2002, **41**, 1930.
- T. S. Kurtikyan, G. G. Martirosyan, I. M. Lorkovic and P. C. Ford, *J. Am. Chem. Soc.*,
 2002, **124**, 10124.
- H. Nagao, D. Ooyama, T. Hirano, H. Naoi, M. Shimada, S. Sasaki, N. Nagao, M. Mukaida and T. Oi, *Inorg. Chim. Acta*, 2001, 320, 60.
- B. Mondal, H. Paul, V. G. Puranik and G. K. Lahiri, *Dalton Trans.*, 2001, 481.
- 25 T. Hirano, K. Ueda, M. Mukaida, H. Nagao and T. Oi, *Dalton Trans.*, 2001, 2341.
- G. B. Richter-Addo, R. A. Wheeler, C. A. Hixson, L. Chen, M. A. Khan, M. K. Ellison,
 C. E. Schulz and W. R. Scheidt, *J. Am. Chem. Soc.*, 2001, 123, 6314.
- 27 S. J. Hodge, L. –S. Wang, M. A. Khan, V. G. Young and G. B. Richter-Addo, *Chem. Commun.*, 1996, 2283.
- 28 C. F. Works and P. C. Ford, J. Am. Chem. Soc., 2000, 122, 7592.

- 29 Y. Chen, Fu-T. Lin and R. E. Shepherd, *Inorg. Chem.*, 1999, **38**, 973.
- 30 L. Chen, G.B. Yi, L.S. Wang, U. R. Dharmawardana, A. C. Dart, M. A. Khan and G. B. Richter-Addo, *Inorg. Chem.*, 1998, **37**, 4677.
- I. M. Lorkovic, K. M. Miranda, B. Lee, S. Bernhard, J. R. Schoonover and P. C. Ford,
 J. Am. Chem. Soc., 1998, **120**, 11674.
- 32 K. M. Miranda, X. Bu, I. Lorković and P. C. Ford, *Inorg. Chem.*, 1997, **36**, 4838.
- A. A. Chevalier, L. A. Gentil and J. A. Olabe, *Dalton Trans.*, 1991, 1959.
- 34 L. F. Szczepura and K. J. Takeuchi, *Inorg. Chem.*, 1990, **29**, 1772.
- 35 D. W. Pipes and T. J. Meyer, *Inorg. Chem.*, 1984, **23**, 2466.
- 36 L. K. Bell, J. Mason, D. Michael, P. Mingos and D. G. Tew, *Inorg. Chem.*, 1983, 22, 3497.
- 37 K. K. Pandey, S. R. Ahuja, N. S. Poonia and S. Bharti, *Chem. Commun.*, 1982, 1268.
- 38 R. W. Callahan and T. J. Meyer, *Inorg. Chem.*, 1977, 16, 574.
- J. Reed, A. J. Schultz, C. G. Pierpont and R. Eisenberg, *Inorg. Chem.*, 1973, 12, 2949.
- 40 J. B. Godwin and T. J. Meyer, *Inorg. Chem.*, 1971, **10**, 471.
- 41 C. G. Pierpont, A. Pucci and R. Eisenberg, J. Am. Chem. Soc., 1971, 93, 3050.
- 42 K. R. Grundy, K. R. Laing and W. R. Roper, *Chem. Commun.*, 1970, 1500.
- 43 C. G. Pierpont, D. G. Van Derveer, W. Durland and R. Eisenberg, *J. Am. Chem. Soc.*, 1970, **92**, 4760.
- 44 E. E. Mercer, W. A. McAllister and J. R. Durig, *Inorg. Chem.*, 1966, 5, 1881.
- P. Singh, J. Fiedler, S. Záliš, C. Duboc, M. Niemeyer, F. Lissner, Th. Schleid and W.
 Kaim, *Inorg. Chem.*, 2007, 46, 9254.

- (a) D. R. Lang, J. A. Davis, L. G. F. Lopes, A. A. Ferro, L. C. G. Vasconcellos,
 D. W. Franco, E. Tfouni, A. Wieraszko and M. J. Clarke, *Inorg. Chem.*, 2000, 39,
 2294; (b) B. R. McGarvey, A. A. Ferro, E. Tfouni, C. W. Brito Bezerra, I. Bagatin and D. W. Franco, *Inorg. Chem.*, 2000, 39, 3577.
- V. R. de Souza, A. M. de Costa Ferreira and H. E. Toma, *Dalton Trans.*, 2003, 458.
- M. Wanner, T. Scheiring, W. Kaim, L. D. Slep, L. M. Baraldo, J. A. Olabe, S.
 Záliš and E. J. Baerends, *Inorg. Chem.*, 2001, 40, 5704.
- P. Diversi, M. Fontani, M. Fuligni, F. Laschi, F. Marchetti, S. Matteoni, C.
 Pinzino and P. Zanello, J. Organomet. Chem., 2003, 675, 21.
- 50 A. V. Marchenko, A. N. Vedernikov, D. F. Dye, M. Pink, J. M. Zaleski and K. G. Caulton, *Inorg. Chem.*, 2004, 43, 351.