Electronic Supporting Information for C002347G - Dalton Transactions

Infrared Spectra of XC=IrX₃ and CX₂=IrX₂ Prepared by Reactions of Laser-Ablated Iridium Atoms with

Halomethanes

Han-Gook Cho and Lester Andrews*

Department of Chemistry, University of Incheon, 177 Dohwa-dong, Nam-ku, Incheon, 402-749, South Korea, and Department of Chemistry, University of Virginia, P. O. Box 400319, Charlottesville, Virginia 22904-4319

Abstract

Small iridium high oxidation-state complexes with carbon-iridium multiple bonds are identified in the product matrix infrared spectra from reactions of laser-ablated Ir atoms with tetra-, tri- and dihalomethanes. In contrast to the previously studied Rh case, Ir carbyne complexes $(XC\equiv IrX_3)$ are generated in reactions of tetrahalomethanes, and their short Ir-C bondlengths of 1.725-1.736 Å are appropriate for the carbon-metal triple bonds. DFT calculations also show that the Ir carbynes with an Ir-F bond have unusual square planar structures, similar to the recently discovered Ru planar complexes. Diminishing preference for the carbyne complexes leads to methylidene product absorptions in the tri- and dihalomethane spectra, marking a limit for generation of small metal carbynes. The insertion complexes, on the other hand, are not observed in this study, suggesting that X migration from C to Ir following initial C-X insertion is swift.

*Author to whom correspondence should be addressed. E-mail: lsa@virginia.edu

Approximate		FC	C≡IrCl₃			Approximate		FC	≡IrFCl ₂		
Description	Obs ^b	B3LYP ^c	Int ^c	BPW91 ^d	Int ^d	Description	Obs ^b	B3LYP ^c	int ^c	BPW91 ^d 1613.8 585.9 596.3 586.2 552.4 362.8 348.1 237.1 153.8 95.9 56.6 41.0	Int ^d
A' F-C-Ir as. str.	1545.4	1573.8	658	1524.3	567	A ₁ F-C-Ir as. str.	1643.6, 1635.4	1662.9	641	1613.8	541
A' F-C-Ir s. str.	629.4	630.3	14	616.4	22	A1 F-C-Ir ip. bend		613.3	6	585.9	9
A' F-C-Ir ip. bend		410.8	1	394.8	1	B ₂ C-Ir-F as. str.	619.4	610.8	60	596.3	69
A" F-C-Ir oop. bend		406.4	10	381.7	10	A ₁ C-Ir-F s. str.		602.3	26	586.2	4
A' IrCl₃ s. str.		353.1	6	349.5	5	B_1 F-C-Ir oop. bend		570.8	6	552.4	6
A" IrCl ₂ as. str.		344.1	95	339.2	88	B ₂ IrCl ₂ as. str.		370.9	80	362.8	57
A' Ir-Cl str.		316.8	23	313.1	20	A ₁ IrCl ₂ s. str.		355.2	0	348.1	1
A' IrCl ₂ wag		139.5	0	137.1	0	B_2 Ir-F ip. bend		239.9	1	237.1	1
A' $IrCl_3$ s. deform		102.8	1	100.9	1	A_1 IrCl ₂ ip. bend		154.7	0	153.8	0
A" IrCl ₃ as. deform		97.8	5	89.0	4	B ₁ IrCFCl ₂ deform		94.4	2	95.9	1
A' InCl ₃ rock		56.1	1	56.8	1	B ₂ IrFCl ₂ rock		56.2	0	56.6	0
A" InCl₃ rock		40.0	9	97.8	27	B_1 IrCl ₂ oop. bend		39.7	0	41.0	0

Table S1: Observed and Calculated Fundamental Frequencies of FC=IrCl₃ and FC=IrFCl₂ in the Ground ²A₂ and ²A' States^a

^a Frequencies and intensities are in cm⁻¹ and km/mol. ^b Observed in an argon matrix, and the stronger one in an absorption pair is bold. ^c Computed with B3LYP/6-311++G(3df,3pd). ^d Computed with BPW91/6-311++G(3df,3pd). FC=IrCl₃(D) and FC=IrFCl₂(D) have C_s and square planar C_{2v} structures, and the symmetry notations are based on the structures.

Approximate		CCl≡Irl	FCl ₂			Approximate	CCI≡IrF₂CI							
Description	Obs ^b	B3LYP ^c	Int ^c	BPW91 ^d	Int ^d	Description	Obs ^b	B3LYP ^c	int ^c	BPW91 ^d	Int ^d			
A ₁ CI-C-Ir as. str.	1318.9, 1316.7 , 1314.5	1332.5	381	1312.8	298	A' CI-C-Ir as. str.	1318.0	1331.1	365	1311.2	280			
A ₁ Ir-F str.	608.4, 607.3	595.8	110	581.7	94	A' IrF ₂ s. str.	629.2	623.6	145	606.2	117			
B2 CI-C-Ir ip bend		525.6	0	505.1	0	A' IrF ₂ as. str.	covered	592.3	94	574.9	77			
B_1 CI-C-Ir oop bend		474.2	0	461.6	0	A' CI-C-Ir ip bend		533.9	1	513.1	1			
A ₁ CI-C-Ir s. str.		431.7	4	422.5	5	A" CI-C-Ir oop bend		476.0	0	464.2	0			
B_2 IrCl ₂ as. str.		367.9	83	360.7	60	A' CI-C-Ir s. str.		430.9	5	421.2	6			
A ₁ IrCl ₂ s. str.		353.0	0	346.8	1	A' Ir-Cl str.		377.6	26	370.5	18			
B_2 Ir-F ip bend		237.8	1	235.9	1	A' IrF_2 scis.		266.6	1	263.2	2			
A_1 IrCl ₂ ip bend		152.8	0	152.2	0	A' FIrCI bend		191.8	0	191.5	0			
B ₁ IrCFCl ₂ deform		85.9	2	88.2	1	A" IrCCIF ₂ deform		109.5	4	111.5	2			
B_2 IrFCl ₂ rock		44.5	0	44.4	0	A' IrF ₂ CI rock		50.5	0	54.4	0			
B_1 IrCl ₂ oop bend		31.9	0	34.2	0	A" IrF ₂ twist		39.4	0	42.9	0			

Table S2: Observed and Calculated Fundamental Frequencies of CCl=IrFCl₂ and CCl=IrF₂Cl in the Ground ²A₂ and ²A" States^a

^a Frequencies and intensities are in cm⁻¹ and km/mol. ^b Observed in an argon matrix, and the strongest one in an absorption set is bold. ^c Computed with B3LYP/6-311++G(3df,3pd). ^d Computed with BPW91/6-311++G(3df,3pd). ClC=IrFCl₂(D) and ClC=IrF₂Cl(D) have square planar C_{2v} and C_s structures, and the symmetry notations are based on the structures.

Approximate		CH	CI=IrCI	2			С	DCI=Ir	Cl ₂			¹³ CH	ICI=IrC	;l ₂	
Description	Obs ^b	B3LYP ^d	Int ^d	BPW91	Int	Obs ^b	B3LYP ^d	Int ^d	BPW91	Int	Obs ^b	B3LYP ^d	Int ^d	BPW91	Int
A' C-H str.		3107.8	4	3038.6	4		2286.8	2	2235.6	2		3098.4	5	3029.4	4
A' HCIr bend	1185.7, 1182.2, 1174.8	1220.1	74	1166.0	70	1000.1	1013.0	232	977.3	219	1177.7, 1173.9, 1166.2	1212.6	60	1158.9	56
A' Ir-C-Cl as. str.	914.9 , 909.9	918.0	212	899.8	191	775.6	795.7	63	768.5	47	888.3 , 884.0	890.2	208	872.3	188
A' C-H oop bend	730.3	757.2	19	717.9	20	604.3, 601.0	641.8	27	624.5	38	covered ^e	747.0	19	708.3	21
A' Ir-C-Cl s. str.	covered ^e	667.8	39	651.8	51		626.5	8	593.5	10	covered ^e	650.1	36	634.6	48
A' IrCl ₂ as. str.		384.7	89	388.1	70		384.7	89	380.1	67		384.7	89	388.1	70
A' IrCl ₂ s. str.		367.2	11	370.8	9		367.2	11	361.0	8		367.2	11	370.8	9
A' IrCCI bend		230.7	0	224.8	0		229.5	0	219.6	0		229.2	0	223.4	0
A" HCCIIr deform		200.3	4	208.8	4		175.1	3	181.6	3		196.0	4	204.3	4
A" IrCl ₂ scis.		114.0	0	115.1	0		113.9	0	112.4	0		113.9	0	115.0	0
A" IrCl ₂ wag		78.4	1	80.3	0		78.3	1	78.7	0		78.4	1	80.3	0
A" CHCI twist		38.7	0	45.1	0		38.1	0	43.5	0		38.7	0	45.1	0

Table S3: Observed and Calculated Fundamental Frequencies of CHCl=IrCl₂ Isotopomers in the Ground ²A" State^a

^a Frequencies and intensities are in cm⁻¹ and km/mol. ^b Observed in an argon matrix, and the strongest one in an absorption set is bold. ^c Computed with B3LYP/6-311++G(3df,3pd). ^d Computed with BPW91/6-311++G(3df,3pd). CHCl=IrCl₂(T) has a C_s structure with two equal Ir-Cl bonds. The symmetry notations are based on the C_s structure. ^e Covered by precursor band.

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Approximate		CH	l ₂ =IrCl ₂	2			CE	D ₂ =IrCl ₂	2			13CI	H ₂ =IrCl	2	
Description	Obs ^b	B3LYP ^d	Int ^d	BPW91	int	Obs ^b	B3LYP ^d	Int ^d	BPW91	int	Obs ^b	B3LYP ^d	Int ^d	BPW91	int
B ₁ as. CH ₂ str.		3150.1	0	3069.4	2		2346.7	0	2287.0	1		3136.9	0	3056.6	2
A ₁ s. CH ₂ str.		3036.5	3	2955.8	6		2194.1	3	2134.1	5		3032.0	3	2951.6	5
$A_1 CH_2$ scis.	1350.8	1406.4	8	1352.7	10	1067.6	1107.5	8	1069.3	8	1342.5	1397.1	7	1343.8	10
$B_2 CH_2 scis.$	890.4	949.6	25	901.2	26	covered ^e	751.8	12	713.6	13	882.4	940.6	25	892.7	26
A ₁ C-Ir str.		847.8	4	839.9	2		749.1	1	739.9	0		823.0	4	815.4	2
$B_1 CH_2 rock$		807.6	4	785.2	4		607.2	2	590.0	2		803.2	5	780.9	4
B ₂ as. IrCl ₂ str.		386.8	93	391.6	75		386.8	93	391.6	75		386.8	93	391.6	75
A ₁ s. IrCl ₂ str.		371.2	7	376.2	5		371.1	7	376.2	5		371.2	7	376.2	5
A ₂ CH ₂ twist		256.0	0	294.0	0		181.6	0	208.5	0		256.0	0	294.0	0
B ₂ IrCl ₂ rock		203.0	3	206.0	2		184.7	2	187.4	2		198.1	3	201.1	2
A ₁ IrCl ₂ scis.		119.5	0	121.0	0		119.4	0	120.9	0		119.4	0	120.9	0
B ₁ IrCl ₂ waq		92.7	0	95.5	0		90.2	0	92.9	0		92.1	0	94.9	0

Table S4: Observed and Calculated Fundamental Frequencies of CH₂=IrCl₂ Isotopomers in the Ground ²A₂ State^a

^a Frequencies and intensities are in cm⁻¹ and km/mol. ^b Observed in an argon matrix. ^c Computed with B3LYP/6-311++G(3df,3pd). ^d Computed with BPW91/6-311++G(3df,3pd). CH₂=IrCl₂ has a C_{2v} structure with two equal Ir-Cl bonds, and the symmetry notations are based on the structure. ^e Covered by precursor band.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Approximate		CH	₂ =IrFCI				CI	D ₂ =IrFCI		
Description	Obs ^b	B3LYP ^d	Int ^d	BPW91	int	Obs ^b	B3LYP ^d	Int ^d	BPW91	int
A" as. CH ₂ str.		3155.5	0	3078.3	2		2350.8	0	2293.8	1
A' s. CH ₂ str.		3041.5	3	2964.4	5		2197.7	3	2140.5	4
A' CH ₂ scis.		1406.4	7	1353.7	10		1107.0	7	1069.8	8
A' CH ₂ wag	918.5	952.0	32	905.7	32	covered ^e	757.1	13	717.2	18
A' C-Ir str.		848.7	3	842.2	2		748.0	5	743.2	0
A" CH ₂ rock		817.6	6	795.8	5		615.2	2	598.8	2
A' Ir-F str.	620.8, 615.7	620.7	121	615.0	103	620.6, 615.4	620.6	121	614.9	101
A' Ir-Cl str.		386.8	38	392.5	30		386.8	38	392.5	30
A" CH ₂ twist		300.2	0	324.7	0		215.0	0	231.9	0
A' CIrF bend		217.8	3	221.6	2		200.7	2	204.7	2
A' FIrCl bend		157.9	0	161.7	0		156.3	0	159.8	0
A" IrFCI wag		120.7	1	121.1	0		117.4	1	117.7	0

Table S5: Observed and Calculated Fundamental Frequencies of CH₂=IrFCl Isotopomers in the ground ²A" State^a

^a Frequencies and intensities are in cm⁻¹ and km/mol. ^b Observed in an argon matrix, and the stronger one in an absorption pair is bold. ^c Computed with B3LYP/6-311++G(3df,3pd). ^d Computed with BPW91/6-311++G(3df,3pd). CH₂=IrFCl(T) has a C_s structure, and the symmetry notations are based on the structure. ^e Covered by precursor band.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Approximate		CF	l ₂ =IrF ₂			CD ₂ =IrF ₂						
Description	Obs ^b	B3LYP ^d	Int ^d	BPW91	int	Obs ^b	B3LYP ^d	Int ^d	BPW91	int		
B ₁ CH ₂ as. str.		3161.9	0	3084.6	1		2355.7	0	2298.7	1		
A ₁ CH ₂ s. str.		3046.8	2	2969.7	5		2201.6	2	2144.4	4		
$A_1 CH_2 scis.$		1405.0	6	1353.0	8		1104.9	6	1068.9	7		
$B_2 CH_2$ wag	covered ^e	948.9	35	902.6	35	covered ^e	755.1	19	718.6	20		
A ₁ C-Ir str.		847.6	2	843.9	1		750.0	0	743.8	0		
$B_1 CH_2 rock$		826.2	8	805.5	7		622.2	4	606.6	3		
$B_2 IrF_2 as. str.$	643.7, 642.3	649.0	169	641.7	143	643.6, 642.6	648.9	168	641.6	141		
$A_1 IrF_2 s. str.$	602.3	629.8	35	621.9	28	602.3	629.7	35	621.8	28		
A ₂ CH ₂ twist		304.1	0	337.1	0		216.4	0	239.9	0		
B_2 IrF ₂ rock		235.4	3	238.7	3		216.5	2	219.4	2		
$A_1 IrF_2 scis.$		202.9	2	202.1	1		202.8	2	202.0	1		
B_1 IrF ₂ wag		162.3	2	160.1	1		160.0	2	157.6	1		

Table S6: Observed and Calculated Fundamental Frequencies of CH₂=IrF₂ Isotopomers in the ²A₂ ground State^a

^a Frequencies and intensities are in cm⁻¹ and km/mol. ^b Observed in an argon matrix, and the stronger one in a absorption pair is bold. ^c Computed with B3LYP/6-311++G(3df,3pd). ^d Computed with BPW91/6-311++G(3df,3pd). ^e Covered by precursor band. CH₂=IrF₂ has a C_{2v} structure with two equal Ir-F bonds, and the symmetry notations are based on the structure.