Supporting Information

Fascinating Frontiers of N/O-functionalized N-Heterocyclic Carbene

Chemistry: From Chemical Catalysis to Biomedical Applications

Alex John and Prasenjit Ghosh*

Department of Chemistry

Indian Institute of Technology Bombay,

Powai, Mumbai 400 076.

Email: pghosh@chem.iitb.ac.in

Tel.: +91-22-2576-7178; Fax: +91-22-2572-3480

The density functional theory calculations were performed on six PEPPSI type palladium complex namely, $[1,3-bis(2,6-di-i-propylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-7), $[1,3-bis(2,6-di-ethylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-8), $[1,3-bis(2,4,6-tri-methylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-9), $[1,3-bis(2,6-di-methylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-9), $[1,3-bis(2,6-di-methylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-9), $[1,3-bis(2,6-di-methylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-9), $[1,3-bis(2,6-di-methylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-9), $[1,3-bis(2,6-di-methylphenyl)-imidazolidine-2-ylidene]PdCl_2(NC_5H_5)$ (Pd-10), $[1-(benzyl)-4-(i-propyl)-1,2,4-triazol-5-ylidene]PdBr_2(NC_5H_5)$ (Pd-11), $[1-(benzyl)-4-(N-tert-butylacetamide)-1,2,4-triazol-5-ylidine]PdBr_2(NC_5H_5)$ (Pd-12) using GAUSSIAN 03¹

suite of quantum chemical programs.

Table S1. B3LYP/SDD, 6-31G* optimized coordinates of Pd-7

Ground state electronic energy = -2457.9886554 hartree/particle.

Pd	-0.00192	1.170061	-0.00076
Cl	0.94956	1.193028	-2.15637
Cl	-0.95319	1.193439	2.154954
Ν	1.095318	-1.60569	0.124301
Ν	-1.09065	-1.60885	-0.12108
Ν	-0.00547	3.32082	-0.00234
С	0.001343	-0.82278	0.000708
С	0.72684	-3.03351	0.249444
Η	0.811608	-3.34245	1.298706
Η	1.387425	-3.65921	-0.35105
С	-0.71843	-3.03568	-0.24476
Η	-0.80244	-3.34613	-1.29364
Η	-1.37728	-3.66245	0.356527
С	-1.0539	4.005385	0.491918
Η	-1.85673	3.406251	0.904482
С	-1.09667	5.396779	0.498634
Η	-1.9685	5.90245	0.900718
С	-0.00981	6.109126	-0.00588
Η	-0.01156	7.195571	-0.00737
С	1.079327	5.398898	-0.50846
Η	1.949584	5.90628	-0.9118
С	1.040955	4.007406	-0.49814
Η	1.845738	3.409723	-0.90895
С	2.47415	-1.2092	0.304687

С	2.927563	-0.80313	1.581407
С	2.042248	-0.79844	2.824719
Η	0.996776	-0.84782	2.512218
С	2.342433	-2.03745	3.697058
Η	2.219085	-2.97301	3.138688
Η	1.669828	-2.06738	4.562649
Η	3.372977	-2.0146	4.071954
С	2.185736	0.486694	3.659904
Η	3.182421	0.575291	4.108974
Η	1.454006	0.48086	4.474553
Η	1.993149	1.37438	3.05191
С	4.281698	-0.46776	1.717632
Η	4.652068	-0.14615	2.685973
С	5.162762	-0.55628	0.646186
Η	6.20896	-0.29173	0.7772
С	4.706036	-1.00477	-0.58872
Η	5.404941	-1.09345	-1.41476
С	3.363585	-1.34623	-0.78931
С	2.944944	-1.91079	-2.14585
Η	1.851485	-1.91114	-2.18767
С	3.444874	-3.36434	-2.30864
Η	4.540806	-3.39802	-2.32259
Н	3.085737	-3.78901	-3.25382
Н	3.113623	-4.01969	-1.49484
С	3.439501	-1.06274	-3.33267
Н	3.119128	-0.0242	-3.23009
Н	3.026031	-1.45942	-4.26768
Н	4.531872	-1.08948	-3.42432
С	-2.47043	-1.21628	-0.30263
С	-2.92438	-0.81476	-1.5806
С	-2.03872	-0.81099	-2.82367
Η	-0.99325	-0.85628	-2.51058
С	-2.18555	0.471499	-3.66241
Η	-1.4518	0.466675	-4.47522
Η	-1.99809	1.36139	-3.05605
Η	-3.18151	0.554791	-4.11419
С	-2.33491	-2.05328	-3.69271
Η	-3.36552	-2.03463	-4.06766
Η	-2.2087	-2.98704	-3.13198
Η	-1.66226	-2.08339	-4.55826
С	-4.27921	-0.48268	-1.71806
Η	-4.65004	-0.16433	-2.6873
С	-5.1603	-0.57022	-0.64657
Η	-6.20704	-0.30828	-0.77855
С	-4.70289	-1.01417	0.589708
Η	-5.40181	-1.10195	1.415802

С	-3.35973	-1.35221	0.791591
С	-2.93976	-1.91213	2.14962
Н	-1.84632	-1.90881	2.191901
С	-3.43508	-3.36685	2.316008
Н	-3.07619	-3.78739	3.263144
Н	-3.10007	-4.02364	1.50494
Н	-4.53094	-3.40425	2.328063
С	-3.43739	-1.06287	3.334336
Н	-4.52936	-1.0966	3.428543
Н	-3.12401	-0.02265	3.227387
Н	-3.0192	-1.45337	4.269838

Table S2. B3LYP/SDD, 6-31G* optimized coordinates of Pd-8

Ground state electronic energy = -2300.7458207 hartree/particle.

Pd	0.000032	1.088253	-0.00023
Cl	0.591851	1.103489	2.287826
Cl	-0.59192	1.10375	-2.28825
Ν	-1.09531	-1.68417	0.071383
Ν	1.095513	-1.68415	-0.07174
Ν	-0.00004	3.234697	-5.2E-05
С	0.000083	-0.90376	-0.00026
С	-0.75784	-3.12211	0.129482
Η	-1.31961	-3.67659	-0.62679
Η	-1.01908	-3.5242	1.115034
С	0.758095	-3.12214	-0.1292
Η	1.319886	-3.67626	0.627316
Η	1.019322	-3.52467	-1.11457
С	-2.46668	-1.24966	0.16671
С	-3.24894	-1.20876	-1.00716
С	-2.73642	-1.64559	-2.3655
Η	-1.64752	-1.72218	-2.35541
Η	-2.96391	-0.85947	-3.09404
С	-3.3584	-2.97209	-2.84158
Η	-3.13584	-3.7962	-2.15237
Η	-2.9719	-3.24531	-3.83022
Η	-4.44929	-2.89904	-2.91617
С	-4.57375	-0.76933	-0.89917
Η	-5.18178	-0.70921	-1.79875
С	-5.11466	-0.40046	0.329482
Η	-6.14146	-0.04897	0.389884
С	-4.33788	-0.49005	1.480942
Н	-4.76194	-0.21722	2.444489
С	-3.00791	-0.9269	1.429066

С	-2.24203	-1.07344	2.728639
Η	-1.16788	-1.12054	2.544481
Н	-2.39046	-0.16811	3.328704
С	-2.69389	-2.29792	3.547087
Н	-3.75973	-2.24245	3.796536
Н	-2.13045	-2.36144	4.484976
Н	-2.53764	-3.23299	2.994947
С	2.466872	-1.24953	-0.16687
С	3.008143	-0.92634	-1.4291
С	2.242557	-1.07309	-2.72881
Η	2.392961	-0.16877	-3.32989
Η	1.16824	-1.1181	-2.54512
С	2.692828	-2.29925	-3.54564
Н	3.758722	-2.24537	-3.79522
Н	2.129251	-2.36334	-4.48341
Н	2.535517	-3.23341	-2.99227
С	4.338	-0.48913	-1.48074
Η	4.762077	-0.21598	-2.4442
С	5.114678	-0.39968	-0.3292
Η	6.141406	-0.04795	-0.38942
С	4.573754	-0.76902	0.899301
Η	5.181687	-0.70898	1.798953
С	3.249015	-1.20872	1.007077
С	2.73644	-1.64579	2.365324
Η	2.963453	-0.85958	3.093902
Н	1.647562	-1.72282	2.355054
С	3.358876	-2.97204	2.841506
Н	3.136771	-3.79623	2.15225
Н	2.972307	-3.24543	3.830074
Н	4.44972	-2.89855	2.916294
C	-0.96021	3.919714	-0.64836
Н	-1.69217	3.320492	-1.17632
С	-0.999	5.311188	-0.66305
Н	-1.79862	5.817981	-1.19345
С	-0.00033	6.02235	0.000384
H	-0.00045	7.108847	0.000562
C	0.998494	5.311189	0.663588
H	1.798002	5.817982	1.194142
C	0.959991	3.919712	0.648463
Н	1.692079	3.320482	1.176236

Table S3. B3LYP/SDD, 6-31G* optimized coordinates of Pd-9

Ground state electronic energy = -2222.1363043 hartree/particle.

Pd	0.003033	0.822643	0.005539
Cl	-0.01863	0.886019	-2.35716
Cl	0.025965	0.919444	2.36809
Ν	1.092209	-1.96633	0.065791
Ν	-1.10347	-1.9605	0.092562
Ν	0.012349	2.967537	-0.01125
С	-0.00399	-1.18271	0.045269
С	0.760333	-3.4055	0.147152
Н	1.185595	-3.83739	1.058545
Н	1.182656	-3.9377	-0.71082
С	-0.77733	-3.40216	0.151209
Η	-1.20599	-3.91917	-0.71322
Н	-1.20015	-3.8463	1.05755
С	2.475884	-1.56488	-0.00649
С	3.206129	-1.38361	1.184368
С	2.587381	-1.59454	2.545244
Н	1.712323	-0.95563	2.694905
Н	3.313444	-1.36822	3.332101
Н	2.270346	-2.63663	2.686858
С	4.555067	-1.02723	1.080767
Н	5.124081	-0.87501	1.995511
С	5.191042	-0.87447	-0.15442
С	6.638684	-0.44923	-0.23584
Н	7.206484	-0.78614	0.638232
Н	6.726392	0.644618	-0.27871
Н	7.124684	-0.84852	-1.13254
С	4.450291	-1.12613	-1.31233
Н	4.935836	-1.05071	-2.2829
С	3.098576	-1.48328	-1.26733
С	2.360348	-1.78897	-2.54815
Н	1.916275	-2.79276	-2.53368
Н	3.045318	-1.7474	-3.40048
Н	1.552976	-1.07159	-2.72402
С	-2.48664	-1.55216	0.059792
С	-3.14319	-1.45784	-1.18251
С	-2.44119	-1.75466	-2.48565
Н	-3.14992	-1.70842	-3.31818
Н	-1.996	-2.75796	-2.49039
Н	-1.63864	-1.03613	-2.67928
С	-4.49483	-1.09594	-1.18735
Н	-5.0071	-1.01244	-2.14347
С	-5.20246	-0.85159	-0.0076
С	-6.65086	-0.42262	-0.04343
Н	-6.73946	0.670994	0.002644
Н	-7.21127	-0.82799	0.806267
Н	-7.14418	-0.7508	-0.96443

С	-4.53294	-1.01611	1.208486
Η	-5.07548	-0.86829	2.139832
С	-3.1833	-1.37749	1.271883
С	-2.52726	-1.59875	2.613362
Н	-3.23382	-1.38665	3.421499
Н	-1.65407	-0.95383	2.74648
Η	-2.19759	-2.63941	2.734678
С	0.852397	3.653862	0.78497
Н	1.485815	3.057729	1.430482
С	0.892481	5.045165	0.799576
Η	1.59393	5.552608	1.453714
С	0.020333	5.755069	-0.02412
Н	0.023182	6.841477	-0.02886
С	-0.8555	5.042524	-0.8416
Н	-1.55405	5.54796	-1.50037
С	-0.82336	3.651149	-0.81426
Н	-1.45999	3.052613	-1.45438

Table S4. B3LYP/SDD, 6-31G* optimized coordinates of Pd-10

Ground state electronic energy =-2143.5012997 hartree/particle.

Pd	-0.02601	0.794409	0.00259
Cl	0.533657	0.894307	2.295629
Cl	-0.58262	0.831325	-2.2924
Ν	1.168961	-1.95417	-0.01445
Ν	-1.0218	-2.02479	0.110855
Ν	-0.10907	2.936589	-0.01719
С	0.047101	-1.20747	0.022859
С	-0.63344	-3.44768	0.229109
Η	-1.17541	-4.05488	-0.50007
Η	-0.87845	-3.81464	1.232252
С	0.879214	-3.40466	-0.03111
Η	1.458662	-3.91883	0.739522
Η	1.15347	-3.82598	-1.00526
С	2.533306	-1.50321	-0.14321
С	3.051389	-1.22995	-1.42425
С	2.228131	-1.39128	-2.67916
Η	1.467746	-0.60854	-2.76958
Η	1.701344	-2.3524	-2.70224
Η	2.87337	-1.34755	-3.56197
С	4.385835	-0.8132	-1.51674
Η	4.798426	-0.58805	-2.49671
С	5.1848	-0.70113	-0.38208
Η	6.21723	-0.37421	-0.4739

С	4.667001	-1.0324	0.868228
Η	5.298482	-0.97404	1.750797
С	3.33886	-1.44933	1.01307
С	2.81549	-1.83825	2.374809
Η	1.928806	-1.25544	2.637735
Η	3.578598	-1.6618	3.138697
Η	2.550909	-2.90329	2.420657
С	-2.41662	-1.66045	0.163402
С	-3.00878	-1.36374	1.40733
С	-2.23142	-1.40521	2.700757
Η	-2.90757	-1.28045	3.552023
Η	-1.47303	-0.61753	2.748179
Η	-1.71073	-2.36206	2.831456
С	-4.37262	-1.0438	1.423563
Η	-4.84352	-0.80315	2.37308
С	-5.12673	-1.04533	0.252845
Η	-6.18336	-0.79306	0.286259
С	-4.53123	-1.39439	-0.95721
Η	-5.12452	-1.4215	-1.86733
С	-3.17155	-1.71939	-1.02577
С	-2.56071	-2.13229	-2.34352
Η	-3.31428	-2.10274	-3.13621
Η	-2.16571	-3.15618	-2.30869
Η	-1.74364	-1.46239	-2.62583
С	-1.12944	3.579082	-0.61451
Η	-1.86546	2.950591	-1.10075
С	-1.22561	4.967778	-0.62928
Η	-2.07215	5.439386	-1.11733
С	-0.22283	5.721513	-0.02098
Η	-0.26852	6.806906	-0.02053
С	0.839117	5.054096	0.587631
Η	1.645037	5.594446	1.073174
С	0.856355	3.662159	0.576316
Η	1.642591	3.096491	1.061368

Table S5. B3LYP/SDD, 6-31G* optimized coordinates of Pd-11

Ground state electronic energy = -6149.724186 hartree/particle.

Pd	7.610954	3.285082	8.480642
Br	6.341827	5.238522	9.344956
Br	9.045916	1.375228	7.779311
Ν	10.10141	4.672081	9.417105
Ν	9.29291	3.456565	10.96985

Ν	10.94864	4.839383	10.48474
Ν	6.007843	2.691516	7.175454
С	9.083955	3.839124	9.678046
С	10.42928	4.086225	11.41159
Η	10.84032	3.954142	12.40103
С	10.36762	5.391625	8.154803
Η	9.572126	5.052362	7.485772
С	11.72642	4.970005	7.590291
Η	12.53485	5.245201	8.274889
Η	11.8959	5.474972	6.633421
Η	11.75754	3.888938	7.422446
С	10.23854	6.900253	8.379676
Η	9.241967	7.149488	8.756927
Η	10.39249	7.425828	7.431238
Η	10.98861	7.25151	9.095617
С	8.434552	2.552771	11.7571
Н	7.699569	2.160757	11.05027
Η	7.896282	3.15373	12.49698
С	9.218957	1.443262	12.42467
С	9.849027	0.456885	11.6505
Η	9.772235	0.494034	10.56585
С	10.56643	-0.56476	12.27101
Η	11.04989	-1.32586	11.66467
С	10.65964	-0.61622	13.66538
Η	11.21815	-1.41576	14.14467
С	10.03149	0.359313	14.43973
Η	10.09718	0.324005	15.52379
С	9.315163	1.386359	13.81946
Н	8.822082	2.1442	14.42487
С	6.267233	2.229417	5.93725
Η	7.31478	2.151213	5.67185
С	5.258208	1.849525	5.0571
Η	5.520248	1.491005	4.067064
С	3.930633	1.931032	5.474393
Η	3.12197	1.63513	4.812065
С	3.662606	2.400307	6.759283
Η	2.647004	2.4832	7.132212
С	4.72479	2.77868	7.575397
Н	4.56578	3.183724	8.567644

Table S6. B3LYP/SDD, 6-31G* optimized coordinates of Pd-12

Ground state electronic energy = -6397.0418969 hartree/particle.

Pd	0.090957	1.044647	0.04902
Br	1.628027	1.369384	1.967635
Br	-1.36464	0.486718	-1.896
0	-3.53161	-2.35677	2.491756
Ν	-0.31254	-1.7588	1.044432
Ν	1.293835	-1.6848	-0.35382
Ν	0.139369	-3.0537	0.94646
Ν	-3.10304	-1.94974	0.270217
Ν	-0.22561	3.156177	-0.18173
С	0.371938	-0.90073	0.26865
С	1.115151	-2.97303	0.08904
Η	1.726076	-3.80453	-0.22844
С	2.299821	-1.23235	-1.33324
Η	2.203119	-0.14466	-1.36711
Η	2.015707	-1.62214	-2.31561
С	3.702593	-1.66216	-0.96045
С	4.311107	-1.16238	0.201042
Η	3.769361	-0.46515	0.836984
С	5.604906	-1.55869	0.536114
Η	6.070128	-1.16687	1.436402
С	6.304362	-2.45093	-0.28256
Η	7.313369	-2.75556	-0.01822
С	5.705267	-2.94729	-1.44038
Η	6.24385	-3.63916	-2.08212
С	4.406945	-2.55465	-1.77599
Η	3.941839	-2.93957	-2.68126
С	-1.39176	-1.45694	1.977802
Η	-1.4194	-0.36985	2.0892
Η	-1.14658	-1.90371	2.941742
С	-2.79101	-1.98126	1.588321
С	-4.42924	-2.32148	-0.28915
С	-4.31248	-2.19076	-1.81573
Η	-4.04323	-1.1702	-2.10972
Η	-5.27015	-2.44134	-2.28371
Η	-3.55122	-2.8732	-2.21167
С	-4.76312	-3.7778	0.082234
Η	-3.98955	-4.45647	-0.29438
Η	-5.72005	-4.06356	-0.36966
Η	-4.83477	-3.89705	1.164786
С	-5.51081	-1.36192	0.24365
Η	-5.56857	-1.41971	1.333245
Η	-6.49022	-1.62505	-0.17285

-5.28337	-0.32885	-0.04391
-0.38433	3.946393	0.897557
-0.30787	3.454921	1.859982
-0.60798	5.315902	0.790956
-0.73758	5.90707	1.691456
-0.65184	5.897602	-0.47503
-0.81818	6.964967	-0.58927
-0.47761	5.081269	-1.59158
-0.50261	5.484768	-2.59847
-0.27597	3.71707	-1.40531
-0.16912	3.037761	-2.24251
-2.4807	-1.44526	-0.35575
	-5.28337 -0.38433 -0.30787 -0.60798 -0.73758 -0.65184 -0.81818 -0.47761 -0.50261 -0.27597 -0.16912 -2.4807	-5.28337-0.32885-0.384333.946393-0.307873.454921-0.607985.315902-0.737585.90707-0.651845.897602-0.818186.964967-0.477615.081269-0.502615.484768-0.275973.71707-0.169123.037761-2.4807-1.44526

Table S7. Charge decomposition analysis (CDA) results showing the NHC $\xrightarrow{\sigma}$ Pd(pyridine)X₂ donation (*d*), the NHC $\xleftarrow{\pi}$ Pd(pyridine)X₂ donation (*b*), *d/b* ratio and the NHC \leftrightarrow Pd(pyridine)X₂ (X = Cl, Br) repulsive polarization (*r*) for the Pd-NHC complexes.

Complex	$\frac{\sigma}{(d)} \operatorname{PdCl}_2(\operatorname{NC}_5\operatorname{H}_5)$	$NHC \stackrel{\pi}{\longleftarrow} PdCl_2(NC_5H_5)$ (b)	<i>d/b</i> ratio	Repulsive polarization (r)
$ \begin{array}{c} $	0.317	0.114	2.78	-0.184
$\mathbf{P}_{d-1}^{C_{l}}$	0.286	0.092	3.11	-0.160
$\mathbf{Pd-9}^{Cl}$	0.318	0.140	2.27	-0.177
$\mathbf{Pd-10}^{Cl}$	0.317	0.133	2.38	-0.179
Pd-11	0.261	0.084	3.11	-0.170
NH O N-N Pd-N Br	0.267	0.113	2.36	-0.181
Pd-12				

Complex	d(Pd-C _{carbene}) (Å)	D _e (Pd-C _{carbene}) (kcal/mol)	d(Pd-N _{pyridine}) (Å)	D _e (Pd-N _{pyridine}) (kcal/mol)
	1.993	74.21	2.15	31.42
$\mathbf{Pd-7}$	1.992	74.83	2.15	31.36
	2.006	76.77	2.14	30.99
Pd-9	2.003	76.26	2.14	31.53
$\mathbf{Pd-10}$	1.977	75.82	2.15	33.32
Pd-12	1.978	76.63	2.15	34.44

Table S8. Bond distance & bond energy of Pd–C_{carbene} and Pd–N_{pyridine.}

References

[1]. GAUSSIAN 03: Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B.

Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.

Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B.

Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.

Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C.

Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,

C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.

Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D.

K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.

Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.

Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.

Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.

Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.