Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically

Crowded ($\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3} \mathbf{M}$ Complexes

Thomas J. Mueller, Joseph W. Ziller, and William J. Evans*
Department of Chemistry, University of California
Irvine, California 92697-2025 (U.S.A.)
Fax: 949-824-2210
E-mail: wevans@uci.edu

X-ray Data Collection, Structure Solution and Refinement for $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{La}(\mathrm{SePh})\right]_{2}, \mathbf{1 b}$.

A colorless crystal of approximate dimensions $0.22 \times 0.24 \times 0.26 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker SMART1K diffractometer. The SMART ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection (25 $\mathrm{sec} / \mathrm{frame}$ scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{2}$ and SADABS 3 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups Pnn2 and Pnnm. It was later determined that the noncentrosymmetric space group Pnn2 was correct.

The structure was solved using the coordinates of the cerium sulfur analogue and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule is located on a two-fold rotation axis.

At convergence, $w R 2=0.0460$ and Goof $=1.057$ for 265 variables refined against 6015 data $(0.75 \AA), \mathrm{R} 1=0.0187$ for those 5560 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$. The structure was refined as a twin with the Flack ${ }^{6}$ parameter $/ \mathrm{BASF}=0.232(9)$.

[^0]| Identification code | tjm4 (1b) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{La}_{2} \mathrm{Se}_{2}$ |
| Formula weight | 1130.82 |
| Temperature | 153(2) K |
| Wavelength | 0.71073 § |
| Crystal system | Orthorhombic |
| Space group | Pnn2 |
| Unit cell dimensions | $\mathrm{a}=10.3729(10) \AA \quad \alpha=90^{\circ}$. |
| | $\mathrm{b}=12.0187(12) \AA \quad \beta=90^{\circ}$. |
| | $\mathrm{c}=19.4835(19) \AA \quad \gamma=90^{\circ}$. |
| Volume | 2429.0(4) \AA^{3} |
| Z | 2 |
| Density (calculated) | $1.546 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $3.266 \mathrm{~mm}^{-1}$ |
| F(000) | 1128 |
| Crystal color | colorless |
| Crystal size | $0.26 \times 0.24 \times 0.22 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 1.99 to 28.30° |
| Index ranges | $-13 \leq h \leq 13,-15 \leq k \leq 16,-25 \leq l \leq 25$ |
| Reflections collected | 25662 |
| Independent reflections | $6015[\mathrm{R}(\mathrm{int})=0.0258]$ |
| Completeness to theta $=28.30^{\circ}$ | 100.0 \% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.5336 and 0.4839 |
| Refinement method | Full-matrix least-squares on F^{2} |
| Data / restraints / parameters | 6015 / 1/265 |
| Goodness-of-fit on F^{2} | 1.057 |
| Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=5560$ data $]$ | $\mathrm{R} 1=0.0187, \mathrm{wR} 2=0.0445$ |
| R indices (all data, $0.75 \AA$) | $\mathrm{R} 1=0.0221, \mathrm{wR} 2=0.0460$ |
| Absolute structure parameter | 0.232 (9) |
| Largest diff. peak and hole | 0.487 and -0.599 e..$^{-3}$ |

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,-y+1,z

X-ray Data Collection, Structure Solution and Refinement for $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{La}(\mathrm{SePh})\right.$ $\left.\left(\mathrm{NCCMe}_{3}\right)\right]_{2}, \mathbf{2 b}$.

A colorless crystal of approximate dimensions $0.09 \times 0.19 \times 0.34 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 ${ }^{7}$ program package was used to determine the unit-cell parameters and for data collection ($25 \mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{8}$ and SADABS^{9} to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. There were no systematic absences nor any diffraction symmetry other than the Friedel condition. The centrosymmetric triclinic space group $P \overline{1}$ was assigned and later determined to be correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecules were dimers and were located about inversion centers. There were 3.5 molecules of benzene solvent present per dimeric formula-unit. At convergence, $\mathrm{wR} 2=0.0583$ and Goof $=$ 1.023 for 828 variables refined against 17502 data $(0.74 \AA), \mathrm{R} 1=0.0237$ for those 15175 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

[^1]Table 2. Crystal data and structure refinement for $\mathbf{2 b}$.

Identification code	tjm30 (2b)
Empirical formula	$\mathrm{C}_{62} \mathrm{H}_{88} \mathrm{La}_{2} \mathrm{~N}_{2} \mathrm{Se}_{2} \cdot 3.5\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
Formula weight	1570.46
Temperature	153(2) K
Wavelength	0.71073 £
Crystal system	Triclinic
Space group	$P \overline{1}$
Unit cell dimensions	$\mathrm{a}=14.9927(9) \AA \quad \alpha=88.5675(7)^{\circ}$.
	$\mathrm{b}=15.3140(9) \AA \quad \beta=88.8528(7)^{\circ}$.
	$\mathrm{c}=16.9117(10) \AA \quad \gamma=79.9654(7)^{\circ}$.
Volume	3821.8(4) \AA^{3}
Z	2
Density (calculated)	$1.365 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.098 \mathrm{~mm}^{-1}$
F(000)	1606
Crystal color	colorless
Crystal size	$0.34 \times 0.19 \times 0.09 \mathrm{~mm}^{3}$
Theta range for data collection	1.75 to 28.50°
Index ranges	$-20 \leq h \leq 19,-20 \leq k \leq 20,-22 \leq l \leq 22$
Reflections collected	44479
Independent reflections	$17502[\mathrm{R}$ (int) $=0.0210]$
Completeness to theta $=28.50^{\circ}$	90.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8337 and 0.5357
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	17502 / 0 / 828
Goodness-of-fit on F^{2}	1.023
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=15175$ data]	$\mathrm{R} 1=0.0237, \mathrm{wR} 2=0.0558$
R indices (all data)	$\mathrm{R} 1=0.0305, \mathrm{wR} 2=0.0583$
Largest diff. peak and hole	0.853 and -0.464 e. \AA^{-3}

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,-y,-z+1 \#2 -x+2,-y+1,-z \#3-x+1,-y+1,-z+1

X-ray Data Collection, Structure Solution and Refinement for $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ce}(\mathrm{SPh})\right]_{2}$, 3,

Figure S1.

A purple crystal of approximate dimensions $0.19 \times 0.21 \times 0.32 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 ${ }^{10}$ program package was used to determine the unit-cell parameters and for data collection ($20 \mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{11}$ and SADABS 3 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups Pnn2 and Pnnm. It was later determined that the noncentrosymmetric space group Pnn2 was correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located on a two-fold rotation axis.

At convergence, $\mathrm{wR} 2=0.0584$ and Goof $=1.046$ for 264 variables refined against 5782 data $(0.75 \AA), \mathrm{R} 1=0.0207$ for those 5498 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$. The absolute structure was assigned by refinement of the Flack parameter. ${ }^{6}$

Figure S1. Thermal ellipsoid plot of $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ce}(\mathrm{SPh})\right]_{2}$, 3, drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

[^2]Table 3. Crystal data and structure refinement for 3.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal color
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=28.28^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=5498$ data $]$
R indices (all data, $0.75 \AA$)
Absolute structure parameter
Largest diff. peak and hole
tjm29 (3)
$\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{Ce}_{2} \mathrm{~S}_{2}$
1039.44

103(2) K
0.71073 Å

Orthorhombic
Pnn2
$a=10.3287(7) \AA \quad \alpha=90^{\circ}$.
$b=11.7979(8) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=19.4736(13) \AA \quad \gamma=90^{\circ}$.
$2373.0(3) \AA^{3}$
2
$1.455 \mathrm{Mg} / \mathrm{m}^{3}$
$2.015 \mathrm{~mm}^{-1}$
1060
purple
$0.32 \times 0.21 \times 0.19 \mathrm{~mm}^{3}$
2.02 to 28.28°
$-13 \leq h \leq 13,-15 \leq k \leq 15,-25 \leq l \leq 25$
26891
5782 [R(int) $=0.0247]$
99.5 \%

Semi-empirical from equivalents
0.7008 and 0.5649

Full-matrix least-squares on F^{2}
5782 / 1 / 264
1.046
$\mathrm{R} 1=0.0207, \mathrm{wR} 2=0.0571$
$\mathrm{R} 1=0.0218, \mathrm{wR} 2=0.0584$
0.001(14)
1.152 and -0.276 e. \AA^{-3}

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,-y+1,z

X-ray Data Collection, Structure Solution and Refinement for $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \operatorname{Pr}(\mathrm{SPh})\right]_{2}, 5$, Figure S2.

A yellow crystal of approximate dimensions $0.13 \times 0.15 \times 0.18 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 ${ }^{7}$ program package was used to determine the unit-cell parameters and for data collection $(10 \mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{8}$ and SADABS^{3} to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{12}$ program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups Pnn2 and Pnnm. It was later determined that the noncentrosymmetric space group Pnn2 was correct.

The structure was solved using the coordinates of the analogous cerium complex and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located on a two-fold rotation axis.

At convergence, $\mathrm{wR} 2=0.0930$ and Goof $=1.028$ for 264 variables refined against 5403 data $(0.77 \AA), \mathrm{R} 1=0.0334$ for those 4399 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$. The absolute structure was assigned by refinement of the Flack parameter. ${ }^{6}$

Figure S2. Thermal ellipsoid plot of $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \operatorname{Pr}(\mathrm{SPh})\right]_{2}$, 5, drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

[^3]Table 4. Crystal data and structure refinement for $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Pr}(\mathrm{SPh})\right]_{2}, 5$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal color
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=27.48^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=4399$ data $]$
R indices (all data, $0.77 \AA$)
Absolute structure parameter
Largest diff. peak and hole
tjm35 (5)
$\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{Pr}_{2} \mathrm{~S}_{2}$
1041.02

148(2) K
$0.71073 \AA$
Orthorhombic
Pnn2
$a=10.3504(6) \AA \quad \alpha=90^{\circ}$.
$b=11.7647(7) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=19.4542(12) \AA \quad \gamma=90^{\circ}$.
2368.9(2) \AA^{3}

2
$1.459 \mathrm{Mg} / \mathrm{m}^{3}$
$2.153 \mathrm{~mm}^{-1}$
1064
yellow
$0.18 \times 0.15 \times 0.13 \mathrm{~mm}^{3}$
2.02 to 27.48°
$-13 \leq h \leq 13,-15 \leq k \leq 15,-25 \leq l \leq 25$
25686
5403 [$\mathrm{R}(\mathrm{int})=0.0477]$
99.8 \%

Semi-empirical from equivalents
0.7671 and 0.6979

Full-matrix least-squares on F^{2}
5403 / 1 / 264
1.028
$\mathrm{R} 1=0.0334, \mathrm{wR} 2=0.0859$
$\mathrm{R} 1=0.0434, \mathrm{wR} 2=0.0930$
-0.01(3)
2.663 and -0.492 e. \AA^{-3}

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,-y+1,z

[^0]: ${ }^{1}$ SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
 ${ }^{2}$ SAINT Version 6.36a, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
 ${ }^{3}$ Sheldrick, G. M. SADABS, Version 2008/1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2008.
 ${ }^{4}$ Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
 ${ }^{5}$ International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
 ${ }^{6}$ H. D. Flack, Acta. Cryst., 1983, A39, 876.

[^1]: ${ }^{7}$ APEX2 Version 2.2-0 Bruker AXS, Inc.; Madison, WI 2007.
 ${ }^{8}$ SAINT Version 7.46a, Bruker AXS, Inc.; Madison, WI 2007
 ${ }^{9}$ Sheldrick, G. M. SADABS, Version 2007/4, Bruker AXS, Inc.; Madison, WI 2007

[^2]: ${ }^{10}$ APEX2 Version 2008.3-0, Bruker AXS, Inc.; Madison, WI 200/8.
 ${ }^{11}$ SAINT Version 7.53a, Bruker AXS, Inc.; Madison, WI 2007.

[^3]: ${ }^{12}$ Sheldrick, G. M. SHELXTL, Version 2008/3, Bruker AXS, Inc.; Madison, WI 2008.

