Factors controlling material deposition in the CVD of nickel sulfides, selenides or phosphides from dichalcogenoimidodiphosphinato complexes: deposition, spectroscopic and computational studies

Arunkumar Panneerselvam,^a Ganga Periyasamy,^b Karthik Ramasamy,^a Mohammad Afzaal,^a Mohammad A. Malik,^a Paul O'Brien,^{*a} Neil A. Burton,^b John Waters^a and Bart E. van Dongen^c

^a The School of Chemistry and the School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: paul.obrien@manchester.ac.uk

^b The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: neil.burton@manchester.ac.uk

^c School of Earth, Atmospheric and Environmental Sciences and Williamson Research Center for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Fig. S1 TGA plot of precursors $[Ni\{^{i}Pr_{2}P(S)NP(Se)^{j}Pr_{2}\}_{2}]$ (1), $[Ni\{(SP^{i}Pr_{2})_{2}N\}_{2}]$ (2) and $[Ni\{(SeP^{i}Pr_{2})_{2}N\}_{2}]$ (3) heated at 10 °C/min under N₂.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S2 XRD patterns of nickel selenide (Ni_{0.85}Se) films deposited on glass from (1) at flow rate of 240 sccm and deposition temperatures of (a) 425 °C and (b) 475 °C, "*" - Ni₂P peaks.

Fig. S3 XRD patterns of nickel sulfide (NiS_{1.03}) films deposited on glass from (**2**) at flow rate of 200 sccm and deposition temperatures of (a) 425 °C and (b) 475 °C, "[#]"- Ni₇S₆, and "*"- Ni₂P peaks.

Fig. S4 XPS spectrum of Ni2p region.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S6 XRD patterns of nickel selenide (Ni_{0.85}Se) films deposited on glass by LPCVD from (3) at substrate temperature of 425 °C and T_{prec} (a) 300 °C and (b) 275 °C.

Fig. S7 (a) Precursor structure $[Ni\{^{i}Pr_{2}P(X1)NP(X2)^{i}Pr_{2}\}_{2}]$ [X1=S, X2= Se (1); X1=X2= S (2); X1=X2= Se (3)] and (b) model used in the calculations.

Table S1 . Reaction energies (kcal mol^{-1}) for the precursors (1), (2) and (3)
computed at the B3LYP/TZVP/6-31+G(d,p)//B3LYP/6-31+G(d,p) level.

	$\Delta_{\rm r} E$	$\Delta_{r} G$		
	(1)/(2)/(3)	(1)/(2)/(3)		
INTA→INTB	70.2/-/75.61	61.8/-/59.1/		
INTA→INTC	60.0/63.8/-	50.2/52.1/-		
INTB→INTE	83.0/275.3/-	75.7/267.2/-		
INTC→INTD	130.1/128.2/-	120.9/121.3/-		
INTE→INTF	-34.5/-/-	-39.5/-/-		
INTE→NiSe ₂ +2PNP	59.9	48.8		
INTF→NiSe ₂ +2PNP	94.4	88.2		
INTF→NiP ₂ +2SePN	118.7	103.7		
$NiSe_2 \rightarrow NiSe + Se$	89.1	81.2		
NiSe → Ni + Se	101.0	94.5		
$NiSe_2 \rightarrow NiSe^{2+} + Se^{2-}$	270.4	245.6		
NiSe → Ni ²⁺ + Se ^{2–}	369.9	361.9		
$NiS_2 \rightarrow NiS + S$	99.9	94.5		
NiS → Ni + S	111.7	104.6		
$NiS_2 \rightarrow NiS^{2+} + S^{2-}$	250.2	236.8		

Table S2. Selected experimental (Exp), computed (DFT) bond-angles (degrees)and ring opening intermediates of precursors (1), (2) and (3)

	Precursor	Level	X1Ni X1 ^a	X2NiX 2 ^a	X1Ni X2 ^b	X1PN	X2PN	PNP
	[Ni{ ⁱ Pr ₂ P(S)NP(Se) ⁱ Pr ₂ } ₂]	Exp ¹	105	113	109	114	120	136
1	$[Ni{(CH_3)_2P(S)NP(Se)(CH_3)_2}_2]$	DFT	109	111	109	117	117	125
INTA	[Ni(SSePNP) ₂]	DFT	101	101	113	109	110	155
INTB	[Ni(SCH ₃ SePNP) ₂]	DFT	87	107	107	-	111	159
INTC	[Ni(SeCH ₃ SPNP) ₂]	DFT	97	106	109	110	-	157
	$[Ni{'Pr_2P(S)NP(S)'Pr_2}_2]$	Exp ²	109	-	110	118	-	-
2								
	[Ni{(CH ₃) ₂ P(S)NP(S)(CH ₃) ₂ } ₂]	DFT	116	-	113	118	-	128
INTA	[Ni(SSPNP) ₂]	DFT	103	-	109	111	-	152
INTB	[Ni(SCH ₃ SPNP) ₂]	DFT	108	-	107	105	-	156
			107 ^c			110 ^c		
3	[Ni{ ⁱ Pr ₂ P(Se)NP(Se) ⁱ Pr ₂ } ₂]	Exp ³	-	-	110	-	-	138
	[Ni{(CH ₃) ₂ P(Se)NP(Se)(CH ₃) ₂] ₂]	DFT	-	107	114	-	117	127
INTA	[Ni(SeSePNP) ₂]	DFT	-	106	117	-	111	159
INTB	[Ni(SeCH ₃ SePNP) ₂]	DFT	108 109 ^c	-	106	106 110 ^c	-	158

'a' indicates the distance and angle between the atom in same ring; where X1, X2 = S or Se; 'b' indicates the angle between the atom in the different ring in the same complex, 'c' indicates the angle due to methylated X1 or X2.

References

- 1 A. Panneerselvam, M. A. Malik, M. Afzaal, P. O'Brien and M. Helliwell, *J. Am. Chem. Soc.*, 2008, **130**, 2420.
- 2 D. Cupertino, R. Keyte, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, *Inorg. Chem.*, 1996, **35**, 2695.
- 3 A. Panneerselvam, C. Q. Nguyen, J. Waters, M. A. Malik, P. O'Brien, J. Raftery and M. Helliwell, *Dalton Trans.*, 2008, 4499.