Counterion-dependent deuteration of pentamethylcyclopentadiene in water-soluble cationic Rh(III) complexes assisted by PTA.

^a Dipartimento di Chimica, Università di Perugia, via Elce di Sotto, 8, 06123 Perugia, Italy.

^b Departamento de Química Inorgánica, Universidade de Vigo, Campus Universitario, E-36310 Vigo,

Spain.

^c ICCOM-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.

Experimental Details

General procedures, methods and materials

All solvents were purified by conventional procedures¹ and distilled prior to use. PTA,² THP,³ [Cp*RhCl₂]₂,⁴ [Cp*RhCl₂(PTA)],⁵ [Cp*RhCl(PTA)₂]Cl (1Cl),⁵ [Cp*Rh(H₂O)₃](OTf)₂,⁶ [Cp*IrCl(PTA)₂]Cl (2Cl),⁷ [Cp*RuCl(PTA)₂],⁸ [Cp*RhCl(THP)₂] and [Cp*RhCl(THP)(PTA)]⁹ were prepared according to published methods. Other reagents were purchased from commercial sources in the highest available purity and used as received. NMR spectra [¹H, ¹⁹F, ³¹P{¹H}] were obtained with a Bruker ARX-400 spectrometer operating at frequencies of 400, 376 and 161 MHz, respectively; ¹H NMR signals were referenced to external TMS, those of ¹⁹F to CFCl₃ and those of ³¹P{¹H} to 85% H₃PO₄. Microanalyses were carried out with a Fisons EA-1108 elemental analyser. pH measurements were carried out with a Crison GLP 21+ pH-meter equipped with a pHR-146 micro-combination pH electrode specifically designed for measuring micro samples in the range of 0-12. Buffer solutions of pH 4.01, 7.00, and 9.21 were utilised for calibration. The value of pD has been obtained subtracting 0.44 from the measured values.¹⁰

Synthesis of $[Cp*RhCl(PTA)_2]PF_6$, $(1PF_6)$. 95 mg of NBu_4PF_6 (0.24 mmol) in warm methanol (5 mL) were added to a solution of 1Cl (100 mg, 0.16 mmol) in boiling methanol (10 mL). The system was cooled and the product was obtained as a microcrystalline orange-yellow powder, which was washed with MeOH (5 mL) and Et₂O (10 mL). Yield: 92%. Anal. Calcd for $C_{22}H_{39}N_6ClP_3F_6Rh$: C, 36.06; H, 5.36; N, 11.47. Found: C, 36.12; H, 5.39; N, 11.52.

Synthesis of $[Cp*RhCl(PTA)_2]OTf$, (1OTf). 32 mg of NaOTf (0.18 mmol) in warm methanol (5 mL) were added to a solution of 1Cl (100 mg, 0.16 mmol) in boiling methanol (10 mL). After the cooling of the system, Et₂O was slowly added, and a yellow product precipitated. This solid was redissolved in CH₂Cl₂, filtered through Celite to remove NaCl and the excess of NaOTf, and precipitated with Et₂O (15 mL). Yield: 85%. Anal. Calcd for C₂₃H₃₉N₆ClP₂O₃SF₃Rh: C, 37.49; H, 5.33; N, 11.40. Found: C, 37.52; H, 5.38; N, 11.49.

Synthesis of $[Cp*RhCl(PTA)_2]BF_4$, (1BF₄). 36 mg of NaBF₄ (0.32 mmol) in boiling methanol (5 mL) were added to a solution of 1Cl (100 mg, 0.16 mmol) in boiling methanol (10 mL). The system was cooled and the product was obtained as a micro-crystalline orange-yellow powder, which was washed with MeOH (5 mL) and Et₂O (10 mL). Yield: 94%. Anal. Calcd for $C_{22}H_{39}N_6BClP_2F_4Rh$: C, 39.16; H, 5.83; N, 12.46. Found: C, 39.12; H, 5.88; N, 12.53.

Synthesis of $[Cp*RhCl(PTA)_2]I$, (11). 24 mg of NaI (0.16 mmol) in warm methanol (5 mL) were added to a solution of 1Cl (100 mg, 0.16 mmol) in boiling methanol (10 mL). The system was cooled and the product was obtained as an orange-yellow solid, which was redissolved in CH₂Cl₂, filtered through Celite to remove the NaCl and finally precipitated with Et₂O (10 mL). Yield: 86%. Anal. Calcd for C₂₂H₃₉N₆ClP₂IRh: C, 36.97; H, 5.50; N, 11.76. Found: C, 37.01; H, 5.56; N, 11.84.

Synthesis of [Cp*Rh (PTA)₃](OTf)₂, (3OTf). To a solution of $[Cp^*Rh(H_2O)_3]OTf$ (100 mg, 0.17mmol) in degassed H₂O (15 mL), PTA (80 mg, 0.51 mmol) was added and the mixture was stirred for 3 h at room temperature. The yellow solution obtained was concentrated under vacuum to give a yellow solid that was washed with Et₂O (15 mL). Yield: 95.0%. Anal. Calc. for C₂₉H₅₁N₉P₃O₃SF₃Rh: C, 40.57; H, 5.99; N, 14.68. Found: C, 40.53; H, 5. 92; N, 14.72 %. ¹H NMR (D₂O): δ 2.17 (q, ⁴J_{HP} = 3.48 Hz, CpCH₃, 15H), 4.47 (br, PCH₂N, 18H), 4.60–4.86 (m, NCH₂N, 18H) ppm. 31P{1H} NMR (D₂O): δ -43.50 (d, ¹J_{PRh} = 120.8 Hz) ppm.

Eyring plots

Figure S1. Eyring plot for 1PF₆. The straight red line is the best linear fit, $\ln k/T - \ln k_B/h = (-6 \pm 2) - (10200 \pm 600)/T$, $r^2 = 0.980$.

Figure S2. Eyring plot for 1Cl. The straight red line is the best linear fit, $\ln k - \ln k_B/h = (-6 \pm 4) - 10 \ln k_B/h = (-6 \pm 4) \ln k_B/h = (-6$

 $(11000 \pm 1000)/T$, $r^2 = 0.945$.

Figure S3. Eyring plot for 4OTf. The straight red line is the best linear fit, $\ln k - \ln k_B/h = (-2 \pm 4) - (12000 \pm 1000)/T$, $r^2 = 0.941$.

H/D exchange kinetic measurements for 1I. The ¹H NMR spectrum of **1**I in D_2O initially shows two different Cp^{*} signals (see Figure S4.), integrating for 15 protons. The intensity of one Cp^{*} resonance

increases up to a plateau while the other disappears with time (Figure S4). This suggests that **1**I undergoes two independent reactions: H/D exchange and irreversible coordination of I^{\cdot} to the metal centre, affording [Cp^{*}Rh(I)(PTA)₂]Cl. The latter does not undergo H/D exchange, probably because the dissociation of Rh-I bond occurs more difficultly. Both the processes were considered to extract the rate of H/D exchange of **1**I.

Figure S4. A stack plot of a series of ¹H spectra for **1**I (T = 343 K, C = 5 mM), showing the deuteration of the Cp^{*} in **1**I and the simultaneous formation of $[Cp^*Rh(I)(PTA)_2]CI$.

Figure S5. Plot of the I/($I_0 + I'_0$) ratio (I = intensity of the Cp* signal, I_0 and I_0' = intensity of the Cp* signal at time = 0) vs. time, relative to Figure S4. The black squares refer to the intensity of the signal relative to [Cp*Rh(I)(PTA)₂]Cl, the red circles to the intensity of the **1**I signal. The black best fit is a monoexponential equation: I/ I_0 = (-0.485 ± 0.006)*exp[-(45 ± 1)*10⁻⁴*t] + (0.764 ± 0.001), r² = 0.9976. The red best fit is a biexponential decay: I/ I_0 = (0.045 ± 0.009)*exp[-(43 ± 2)*10⁻⁴*t] + (0.61 ± 0.03)*exp[-(4.3 ± 0.2)*10⁻⁴*t] + (0.06 ± 0.01), r² = 0.9998.

Particularly, kinetics of $[Cp^*Rh(I)(PTA)_2]Cl$ formation were obtained by fitting the Cp^* intensity with a monoexponential equation ($k_1 = 45 * 10^{-4} s^{-1}$). On the contrary, fitting the decrease of the Cp^* signal intensity of **1**I with a biexponential equation afforded the kinetic parameters for both the H/D exchange ($k_1 = 43 * 10^{-4} s^{-1}$) and the irreversible formation of $[Cp^*Rh(I)(PTA)_2]Cl$ ($k_2 = 4.3*10^{-4} s^{-1}$). Coherently, k_1 obtained by the two methods are equal within the experimental error.

Computational Details. Calculations were performed with the Gaussian03 software package¹¹ at the DFT/B3LYP level. Core electrons of rhodium were described using the LANL2DZ pseudo potential and their valence electrons were expressed through a LANL2DZ basis set.¹² All the remaining atoms were described with a 6-31g* basis set. Solvent effects were introduced by means of the Polarizable Continuum Model (PCM),¹³ using standard UFF solvation spheres. The free energies of solvation were computed in water ($\varepsilon = 78.2$), starting from the gas-phase optimized geometries. For the transition state analytical frequencies were calculated, in order to check that only one imaginary value is obtained.

Coordinates. Optimised geometries (xyz coordinates plus related absolute internal and Gibbs energies, in the gas-phase and in water).

E(gas): gas phase internal energy

E(PCM): gas phase internal energy + contribution of the Gibbs energy of solvation coming from the continuum model

G(gas): gas phase Gibbs energy, obtained adding zero-point, thermal and entropy corrections to the

internal energy

 $G_{water} = G(gas) + [E(PCM)-E(gas)]$: gas phase Gibbs energy + contribution of the Gibbs energy of solvation coming from the continuum model.

1*(H ₂ C)) ₃			Ν	-4.366	1.058	1.336	С	-1.479	-3.494	0.619
E(gas)	= -2671.4	l0939′	7 ha	С	4.673	0.049	0.246	С	-0.120	-3.899	0.321
E (PCM	M) = -267	1.489	144 ha	Н	5.617	0.473	0.598	С	0.065	-3.850	-1.108
G(gas)	= -2670.7	79201	8 ha	Н	4.811	-0.341	-0.765	С	-1.224	-3.520	-1.706
G _{water} =	-2670.87	1764	ha	N	-2.557	2.715	1.207	С	-2.173	-3.308	-0.653
				С	3.421	1.650	1.608	Н	0.148	2.091	-2.103
Rh	-0.485 -1	.729	-0.422	Н	2.646	2.418	1.583	0	0.131	2.734	-1.367
Cl	0.110 -0).520	-2.527	Н	4.353	2.097	1.961	Н	0.760	3.513	-1.559
Р	1.542 -0).735	0.522	С	-2.836	1.023	-1.314	Н	2.858	4.184	-1.554
N	4.281 -1	.043	1.158	Н	-2.062	1.461	-1.941	0	1.928	4.509	-1.767
С	3.149 -1	.839	0.673	Н	-3.371	0.258	-1.883	Н	1.864	5.474	-1.830
Н	3.371 -2	2.252	-0.314	С	-3.545	-0.155	1.262	Н	5.043	3.570	-1.608
Н	2.959 -2	2.657	1.368	Н	-3.244	-0.461	2.268	0	4.203	3.458	-1.134
Р	-1.935 0.	.160	0.193	Н	-4.124	-0.959	0.805	Н	4.120	2.565	-0.678
N	3.035 0.	.564	2.533	С	-1.410	1.817	1.116	С	1.276	-4.251	-1.893
С	1.679 0.	.056	2.301	Н	-1.058	1.560	2.119	Н	2.171	-4.307	-1.266
Н	0.959 0	.872	2.376	Н	-0.627	2.266	0.499	Н	1.471	-3.539	-2.701
Н	1.430 -0).704	3.047	С	-3.056	3.160	-0.125	Н	1.135	-5.240	-2.349
N	3.648 1	.142	0.212	Н	-3.764	3.978	0.027	С	0.842	-4.438	1.335
С	2.391 0	.711	-0.449	Н	-2.213	3.500	-0.727	Н	1.850	-4.542	0.932
Н	1.683 1.	.542	-0.538	С	-4.852	1.520	0.005	Н	0.514	-5.439	1.648
Н	2.605 0.	.346	-1.455	Н	-5.584	2.314	0.171	Н	0.885	-3.821	2.238
N	-3.756 2	.054	-0.834	Н	-5.343	0.691	-0.512	С	-2.114	-3.576	1.975
С	4.068 -0).501	2.524	С	-3.673	2.182	2.019	Н	-1.426	-3.262	2.764
Н	5.010 -0).075	2.878	Н	-4.400	2.982	2.183	Н	-2.412	-4.611	2.194
Н	3.771 -1	.307	3.198	Н	-3.297	1.844	2.988	Н	-3.012	-2.959	2.048

С	-3.652 -3.150 -0.850	С	-4.594 -1.193 -1.513	Н	-3.411 -0.305 1.56	1
Н	-3.897 -2.354 -1.559	С	-2.778 -2.738 -1.988	Н	2.109 0.009 -2.82	28
Н	-4.170 -2.947 0.088	С	-2.400 -0.316 -2.215	Н	1.147 -1.298 -2.10)6
Н	-4.073 -4.081 -1.254	С	3.611 1.123 -0.269	Н	2.257 -3.042 -0.79	94
С	-1.505 -3.499 -3.172	С	2.060 -0.993 0.909	Н	4.030 -3.138 -0.83	37
Н	-0.781 -2.878 -3.707	С	2.022 -0.658 -1.967	Н	5.332 -1.330 -1.83	32
Н	-2.502 -3.110 -3.388	С	4.473 -0.663 -1.730	Н	4.504 0.073 -2.53	35
Н	-1.446 -4.518 -3.579	С	3.179 -2.461 -0.733	Н	5.374 -1.637 0.58	0
		С	4.513 -0.973 0.679	Н	4.564 -0.469 1.64	7
1++'(H	₂ O) ₂	Ν	-2.488 -2.860 -0.535	Н	3.754 1.847 -1.07	73
E(gas)	= -2210.897689 ha	Ν	-3.359 -1.410 -2.313	Н	3.747 1.621 0.69	3
E (PC)	M) = -2211.108062 ha	Ν	-4.324 -1.306 -0.055	Н	2.157 -0.546 1.89	9
G(gas)) = -2210.278509 ha	Ν	3.229 -1.468 -1.828	Н	1.187 -1.644 0.91	4
G _{water} =	= -2210.488882 ha	Ν	3.264 -1.805 0.618	0	-0.132 0.684 2.31	0
		Ν	4.552 0.020 -0.414	Н	-0.020 1.291 3.05	9
Rh	-0.258 1.681 0.333	Η	-0.476 -2.288 -0.674	Н	-0.101 -0.313 2.61	9
Р	1.762 0.428 -0.348	Η	-1.163 -2.197 0.969	Н	0.863 -2.260 3.08	6
Р	-1.775 -0.129 -0.361	Η	-1.863 -2.894 -2.564	0	0.007 -1.696 3.12	8
С	-1.725 3.372 -0.299	Η	-3.500 -3.509 -2.264	Н	-0.625 -2.037 3.78	3
С	-1.374 3.551 1.077	Η	-4.456 -3.407 -0.024	Н	2.489 -3.769 3.46	2
С	0.072 3.814 1.147	Η	-3.519 -2.712 1.314	0	2.175 -3.051 2.89	0
С	0.595 3.778 -0.182	Η	-5.013 -0.209 -1.737	Н	2.793 -2.851 2.13	3
С	-0.493 3.389 -1.083	Η	-5.324 -1.955 -1.791	С	-2.318 3.639 2.23	5
С	-1.369 -2.042 -0.093	Н	-1.534 -0.506 -2.855	Н	-1.885 3.228 3.15	1
С	-3.554 -0.193 0.483	Н	-2.865 0.623 -2.524	Н	-3.254 3.111 2.04	1
С	-3.733 -2.635 0.246	Н	-4.066 0.751 0.287	Н	-2.568 4.688 2.44	2

С	-3.109	3.334	-0.863	С	-1.525	3.428	-0.655	Η	-4.528	-3.321	0.419
Н	-3.177	2.731	-1.772	С	-1.502	3.405	0.811	Н	-3.429	-2.613	1.622
Н	-3.407	4.355	-1.139	С	-0.152	3.733	1.238	Н	-5.248	-0.147	-1.275
Н	-3.846	2.974	-0.143	С	0.668	3.822	0.067	Н	-5.581	-1.890	-1.262
С	-0.421	3.399	-2.579	С	-0.189	3.635	-1.114	Н	-1.924	-0.503	-2.782
Н	0.556	3.076	-2.946	С	-1.457	-1.988	-0.040	Н	-3.193	0.648	-2.318
Н	-0.591	4.416	-2.961	С	-3.531	-0.110	0.749	Н	-4.053	0.836	0.592
Н	-1.179	2.753	-3.030	С	-3.769	-2.554	0.586	Н	-3.275	-0.195	1.809
С	1.964	4.201	-0.610	С	-4.816	-1.132	-1.084	Н	2.028	-0.303	-3.047
Н	2.286	3.696	-1.524	С	-3.088	-2.705	-1.741	Н	1.122	-1.553	-2.181
Н	2.715	4.039	0.166	С	-2.707	-0.292	-2.048	Н	2.320	-3.147	-0.779
Н	1.955	5.278	-0.828	С	3.528	1.084	-0.668	Н	4.109	-3.198	-0.860
С	0.812	4.207	2.387	С	2.074	-0.923	0.764	Н	5.325	-1.454	-2.038
Н	1.882	3.997	2.315	С	1.977	-0.875	-2.119	Н	4.428	-0.152	-2.843
Н	0.422	3.704	3.278	С	4.448	-0.807	-1.972	Н	5.461	-1.496	0.389
Н	0.702	5.285	2.567	С	3.232	-2.548	-0.827	Н	4.629	-0.235	1.354
				С	4.599	-0.826	0.437	Н	3.635	1.731	-1.541
A1				N	-2.626	-2.816	-0.332	Н	3.681	1.686	0.231
E(gas)	= -2210	.88644	91 ha	N	-3.686	-1.377	-2.020	Н	2.150	-0.358	1.694
E (PCI	M) = -22	211.085	89 ha	N	-4.378	-1.225	0.333	Н	1.235	-1.609	0.867
G(gas)) = -2210).24540	1 ha	N	3.222	-1.643	-1.943	0	0.328	0.863	1.977
G _{water} =	= -2210.4	466800	ha	N	4.527	0.004	-0.733	Н	-0.073	0.004	2.241
				Н	-0.645	-2.253	-0.726	Н	0.960	-2.354	3.114
Rh	-0.229	1.688	0.154	Н	-1.123	-2.138	0.991	0	0.067	-1.975	2.964
Р	1.721	0.350	-0.620	Н	-2.249	-2.881	-2.420	Н	-0.496	-2.118	3.748
Р	-1.865	-0.082	-0.286	Н	-3.846	-3.471	-1.918	Н	3.349	-2.993	3.728

0	2.847 -	-3.211	2.917	TS				Η	-0.033	-1.252	2.499
Н	2.674 -	4.174	2.900	E(gas)	= -2210).84800	8 ha	С	2.002	-1.239	4.617
С	-2.690 3	3.383	1.722	E (PCN	M) = -22	211.069	503 ha	Н	2.645	-2.129	4.604
Н	-2.479 2	2.827	2.640	G(gas)	= -2210	0.23018	8 ha	Н	0.974	-1.588	4.487
Н	-3.570 2	2.944	1.248	$G_{water} =$	-2210.4	451683	ha	Н	2.099	-0.791	5.612
Н	-2.960 4	4.408	2.013					Р	-0.279	2.041	4.461
С	-2.757 3	3.406	-1.506	Rh	1.829	1.908	3.238	Р	1.581	4.122	2.220
Η	-2.557 3	3.028	-2.512	С	3.694	0.425	3.540	С	1.065	5.666	3.306
Η	-3.146 4	4.427	-1.615	С	3.731	1.179	2.280	С	3.092	5.012	1.339
Η	-3.558 2	2.808	-1.062	С	2.626	0.739	1.442	С	2.289	7.270	1.898
С	0.237 3	3.848	-2.536	С	1.813	-0.157	2.223	С	1.646	6.255	-0.215
Η	1.281 3	3.565	-2.699	С	2.420	-0.285	3.538	С	-0.049	6.805	1.430
Η	0.145 4	4.908	-2.807	С	4.510	0.675	4.676	С	0.294	4.452	0.782
Η	-0.380 3	3.280	-3.238	Н	5.510	1.062	4.485	С	-1.141	0.507	5.302
С	2.094 4	4.281	0.038	Н	4.483	-0.065	5.474	С	0.101	2.963	6.097
Η	2.617 3	3.958	-0.865	С	4.921	1.974	1.834	С	-1.936	2.988	4.066
Η	2.654 3	3.938	0.912	Н	5.758	1.297	1.613	С	-3.273	1.701	5.704
Η	2.128 5	5.379	0.046	Н	5.262	2.664	2.612	С	-2.291	3.807	6.354
С	0.300 3	3.817	2.655	Н	4.724	2.548	0.927	С	-1.600	1.621	7.441
Η	1.230 4	4.382	2.755	С	2.464	1.012	-0.022	N	0.983	6.884	2.501
Η	0.463 2	2.791	3.028	Н	2.981	0.238	-0.606	N	0.334	5.852	0.358
Η	-0.455 4	4.294	3.286	Н	2.897	1.972	-0.313	N	2.699	6.323	0.832
Ν	3.328 -	1.745	0.523	Н	1.414	1.002	-0.327	N	-2.805	3.036	5.256
Н	3.396 -	2.399	1.334	С	0.652	-0.949	1.703	N	-2.140	0.948	6.293
				Н	1.011	-1.870	1.222	Н	0.087	5.462	3.754
				Н	0.081	-0.394	0.954	Н	1.794	5.781	4.114

Н	-1.007	6.505	1.864	0	0.486	4.604	8.865	Η	4.631	2.528	0.796
Н	-0.160	7.797	0.987	Н	0.204	5.503	9.127	С	2.343	0.947	-0.011
Н	2.186	8.264	1.459	0	2.820	2.565	5.062	Н	2.762	0.123	-0.604
Н	3.057	7.306	2.675	Н	2.836	3.437	5.534	Н	2.816	1.867	-0.364
Н	1.943	5.548	-0.993	Н	3.793	1.737	5.114	Н	1.274	1.002	-0.239
Н	1.539	7.245	-0.663	N	-1.089	3.052	7.036	С	0.646	-1.000	1.822
Н	-0.706	4.194	1.141	Н	-0.755	3.582	7.870	Н	0.991	-1.895	1.287
Н	0.539	3.794	-0.056					Н	0.013	-0.433	1.134
Н	3.428	4.381	0.513	A2				Н	0.027	-1.346	2.654
Н	3.905	5.106	2.063	E(gas)	= -2210).86614	6 ha	С	2.105	-1.193	4.694
Н	-2.456	2.474	3.254	E (PCI	M) = -22	211.088	568 ha	Н	2.765	-2.072	4.703
Н	-1.703	4.003	3.734	G(gas)	= -2210	0.24658	6 ha	Н	1.080	-1.564	4.613
Н	-1.914	4.778	6.030	G _{water} =	-2210.4	469008	ha	Н	2.223	-0.697	5.664
Н	-3.050	3.935	7.130					Р	-0.290	2.044	4.432
Н	-4.057	1.825	6.455	Rh	1.801	1.890	3.176	Р	1.608	4.138	2.229
Н	-3.684	1.150	4.858	С	3.811	0.356	3.458	С	1.090	5.671	3.330
Н	-2.368	1.773	8.202	С	3.717	1.174	2.220	С	3.114	5.047	1.357
Н	-0.749	1.085	7.865	С	2.592	0.709	1.447	С	2.308	7.297	1.943
Н	-1.631	-0.095	4.535	С	1.824	-0.198	2.287	С	1.667	6.309	-0.182
Н	-0.376	-0.103	5.786	С	2.475	-0.281	3.563	С	-0.029	6.833	1.470
Н	0.920	2.438	6.589	С	4.825	0.320	4.360	С	0.322	4.492	0.795
Н	0.445	3.976	5.884	Н	5.764	0.831	4.178	С	-1.139	0.515	5.294
Н	1.959	4.849	7.463	Н	4.779	-0.313	5.239	С	0.044	3.002	6.063
0	2.492	4.918	6.641	С	4.875	1.974	1.704	С	-1.958	2.956	4.003
Н	3.216	5.561	6.753	Н	5.709	1.302	1.458	С	-3.300	1.674	5.643
Н	0.896	4.164	9.637	Н	5.245	2.684	2.451	С	-2.370	3.810	6.268

С	-1.654 1.655	7.406	Н	-1.608	-0.111	4.531
N	1.003 6.903	2.543	Н	-0.371	-0.074	5.799
N	0.356 5.896	0.387	Н	0.857	2.495	6.583
N	2.719 6.365	0.866	Н	0.375	4.016	5.835
N	-2.848 3.009	5.179	Н	1.940	4.811	7.554
N	-2.162 0.954	6.263	0	2.595	4.812	6.819
Н	0.113 5.459	3.778	Н	3.268	5.504	6.944
Н	1.822 5.781	4.136	Н	0.784	4.263	9.631
Н	-0.986 6.526	1.900	0	0.446	4.691	8.819
Н	-0.143 7.831	1.040	Н	0.156	5.600	9.040
Н	2.202 8.297	1.516	0	2.818	2.575	5.344
Н	3.076 7.326	2.720	Н	2.891	3.432	5.850
Н	1.965 5.612	-0.968	Н	3.656	2.064	5.297
Н	1.557 7.304	-0.618	Ν	-1.162	3.092	6.982
Н	-0.678 4.225	1.150	Н	-0.852	3.638	7.812
Н	0.569 3.844	-0.051				
Н	3.451 4.428	0.524	Chlori	de		
Н	3.930 5.137	2.079	E(gas)	= -460.	248702	ha
Н	-2.457 2.421	3.192	E (PCI	M) = -40	50.3736	69 ha
Н	-1.738 3.970	3.659	G(gas)	= -460.	.263705	ha
Н	-2.008 4.783	5.932	G _{water} =	-460.3	88701 h	ia
Н	-3.142 3.936	7.031				
Н	-4.097 1.796	6.379				
Н	-3.686 1.101	4.800				
Н	-2.437 1.809	8.152				
Н	-0.799 1.144	7.852				

¹ D. D.Perrin and W. Armarego, *Purification of Laboratory Chemicals*, 3a ed.l Butterworth and Heinemann, Oxford, 1988.

² (a) D. J. Daigle, A. B. Pepperman and G. Boudreaux, *J. Heterocycl.Chem.* 1974, **11**, 1085; (b)
D. J. Daigle, *Inorg. Synth.* 1998, **32**, 40.

³ K. J. Coskran and J. G. Verkade, *Inorg. Chem.* 1965, **11**, 1655.

⁴ J. W. Kang, K. Moseley and P. M. Maitlis, *J. Am. Chem. Soc.* 1969, **91**, 5970.

⁵ A. Dorcier, W. Han Ang, S. Bolaño, L. Gonsalvi, L. Juillerat-Jeannerat, G. Laurenczy, M. Peruzzini, A. D. Phillips, F. Zanobini and P. J. Dyson, *Organometallics* 2006, **25**, 4090.

⁶ M. S. Eisen, A. Haskel, H. Chen, M. M. Olmstead, D. P. Smith, M. F. Maestre and R. H. Fish, *Organometallics* 1995,14, 2806.

⁷ M. Erlandsson, V. R. Landaeta, L. Gonsalvi, M. Peruzzini, A. D. Phillips, P. J. Dyson and G. Laurenczy, *Eur. J. Inorg. Chem.* 2008, **4**, 620-627.

⁸ D. N. Akbayeva, L. Gonsalvi, W. Oberhauser, M. Peruzzini, F. Vizza, P. Brüggeller, A. Romerosa, G. Sava and A. Bergamo, *Chem. Commun.* 2003, 264.

⁹ S. Bolaño, M. Plaza, J. Bravo, J. Castro, M. Peruzzini, L. Gonsalvi, G. Ciancaleoni and A. Macchioni, *Inorg. Chim. Acta*, 2009, doi: 10.1016/j.ica.2009.05.041.

¹⁰ K. Mikkelsen and S. O. Nielsen, *J. Phys. Chem.*, 1960, **64**, 632.

¹¹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.

Montgomery, Jr.; T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Lyengar, J. Tomasi, V.

Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.

Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.

Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E.

Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,

G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,

O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.

Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.

L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.

W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, revision

C.02; Gaussian, Inc.: Pittsburgh, PA, 2004.

¹² P. J. Hay and W. R. Wadt, *J. Chem. Phys.* 1985, **82**, 270.

¹³ M. Cossi, V. Barone, R. Cammi and J. Tomasi, *Chem. Phys. Lett.* 1996, **255**, 327.