Strained Organosilacyclic Compounds: Synthesis of anti-Bredt Olefins and *trans*-Dioxasilacyclooctenes

Michel Prévost, Joseph W. Ziller, and K. A. Woerpel*^a Department of Chemistry, University of California, Irvine, California 92697-2025

Supplementary information

Contents

I.	Stereochemical Proofs	2
II.	X-ray Crystallographic Data (Aziridine 8)	4
III.	Selected Spectra	13
	•	

I. Stereochemical Proofs

The peaks in the ¹H NMR spectra were assigned using ¹H/¹H COSY experiments, chemical shifts, and coupling constants. The selectivities were determined by ¹H NMR spectroscopy of the unpurified reaction mixture. The relative configurations of the products were determined by relevant nuclear Overhauser effect (nOe) enhancements (2D NOESY) and ¹H NMR coupling constant data. The configuration of aziridine **8** was confirmed by X-ray crystallographic analysis.

Figure S1. Relevant 2D NOESY Data (mixing time 0.8 s) for Epoxide 7

Figure S2. Relevant 2D NOESY Data (mixing time 0.8 s) for Diol 9

Figure S4. Relevant 2D NOESY Data (mixing time 0.8 s) for trans-Dioxasilacyclooctene 26

X-Ray Structure of aziridine 8:

II. X-ray Crystallographic Data (Aziridine 8)

Table 1. Crystal data and structure refinement for aziridine 8.

Identification code	kaw133 (Michel Prevost	t)		
Empirical formula	C ₂₆ H ₄₃ N O ₄ S Si	C ₂₆ H ₄₃ N O ₄ S Si		
Formula weight	493.76			
Temperature	153(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	РĪ			
Unit cell dimensions	a = 9.7886(5) Å	$\alpha = 81.5630(10)^{\circ}$.		
	b = 10.4633(6) Å	β= 79.6200(10)°.		
	c = 13.3805(7) Å	$\gamma = 82.6760(10)^{\circ}$.		
Volume	1326.22(12) Å ³			
Z	2			
Density (calculated)	1.236 Mg/m ³			
Absorption coefficient	0.199 mm ⁻¹			
F(000)	536			
Crystal color	colorless			
Crystal size	0.32 x 0.24 x 0.16 mm ³			
Theta range for data collection	1.56 to 28.40°			
Index ranges	$-12 \le h \le 13, -13 \le k \le 1$	3, $-16 \le l \le 17$		
Reflections collected	15338			
Independent reflections	6091 [R(int) = 0.0154]			
Completeness to theta = 28.40°	91.8 %			
Absorption correction	Semi-empirical from equ	uivalents		
Max. and min. transmission	0.9697 and 0.9390			
Refinement method	Full-matrix least-squares	s on F ²		
Data / restraints / parameters	6091 / 0 / 470			
Goodness-of-fit on F ²	1.049			
Final R indices [I>2sigma(I) = 5589 data]	R1 = 0.0321, $wR2 = 0.0$	901		
R indices (all data, 0.75Å)	R1 = 0.0348, wR2 = 0.0	925		
Largest diff. peak and hole	0.450 and -0.326 e.Å ⁻³			

	Х	У	Z	U(eq)
<u></u>	7518(1)	8547(1)	4670(1)	16(1)
Si(1)	7339(1)	12237(1)	1369(1)	13(1)
N(1)	6882(1)	8618(1)	3595(1)	15(1)
O(1)	8620(1)	11141(1)	1662(1)	16(1)
O(2)	5844(1)	11640(1)	1482(1)	15(1)
O(3)	6636(1)	7767(1)	5428(1)	23(1)
O(4)	7718(1)	9805(1)	4906(1)	20(1)
C(1)	7511(1)	9357(1)	2605(1)	14(1)
C(2)	7523(1)	8606(1)	1709(1)	18(1)
C(3)	6122(1)	8723(1)	1322(1)	19(1)
C(4)	4861(1)	8801(1)	2176(1)	18(1)
C(5)	4828(1)	9936(1)	2787(1)	15(1)
C(6)	6171(1)	9886(1)	3190(1)	14(1)
C(7)	8730(1)	10149(1)	2503(1)	15(1)
C(8)	4617(1)	11327(1)	2213(1)	14(1)
C(9)	3361(1)	11560(1)	1648(1)	17(1)
C(10)	2030(1)	11155(1)	2351(1)	23(1)
C(11)	3117(1)	12992(1)	1220(1)	23(1)
C(12)	7266(1)	13628(1)	2157(1)	18(1)
C(13)	6420(2)	14849(1)	1716(1)	27(1)
C(14)	8757(1)	13951(2)	2161(1)	29(1)
C(15)	6614(1)	13282(1)	3284(1)	23(1)
C(16)	7869(1)	12634(1)	-71(1)	17(1)
C(17)	9150(1)	13403(1)	-367(1)	26(1)
C(18)	6669(1)	13396(1)	-574(1)	24(1)
C(19)	8244(1)	11348(1)	-536(1)	22(1)
C(20)	9168(1)	7676(1)	4363(1)	17(1)
C(21)	9263(1)	6475(1)	4012(1)	25(1)
C(22)	10568(1)	5788(1)	3796(1)	28(1)
C(23)	11774(1)	6271(1)	3934(1)	23(1)
C(24)	11651(1)	7476(1)	4276(1)	25(1)
C(25) C(26)	10353(1) 13177(2)	8184(1) 5499(2)	4490(1) 3727(1)	24(1) 31(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for aziridine **8**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(3)	1.4363(9)
S(1)-O(4)	1.4428(9)
S(1)-N(1)	1.6559(10)
S(1)-C(20)	1.7616(12)
Si(1)-O(2)	1.6372(8)
Si(1)-O(1)	1.6496(8)
Si(1)-C(16)	1.9011(11)
Si(1)-C(12)	1.9051(12)
N(1)-C(6)	1.4921(14)
N(1)-C(1)	1.5019(13)
O(1)-C(7)	1.4241(13)
O(2)-C(8)	1.4452(12)
C(1)-C(6)	1.4859(15)
C(1)-C(7)	1.5129(14)
C(1)-C(2)	1.5251(15)
C(2)-C(3)	1.5357(16)
C(3)-C(4)	1.5266(16)
C(4)-C(5)	1.5321(15)
C(5)-C(6)	1.5000(15)
C(5)-C(8)	1.5505(15)
C(8)-C(9)	1.5306(15)
C(9)-C(11)	1.5284(16)
C(9)-C(10)	1.5312(16)
C(12)-C(13)	1.5336(17)
C(12)-C(15)	1.5383(16)
C(12)-C(14)	1.5412(16)
C(16)-C(18)	1.5353(16)
C(16)-C(17)	1.5369(16)
C(16)-C(19)	1.5394(16)
C(20)-C(25)	1.3827(17)
C(20)-C(21)	1.3919(17)
C(21)-C(22)	1.3875(18)
C(22)-C(23)	1.3932(19)
C(23)-C(24)	1.3878(18)
C(23)-C(26)	1.5042(17)
C(24)-C(25)	1.3919(18)

Table 3. Bond lengths [Å] and angles [°] for aziridine 8.

O(3)-S(1)-O(4)	117.10(5)
O(3)-S(1)-N(1)	105.44(5)
O(4)-S(1)-N(1)	113.20(5)
O(3)-S(1)-C(20)	109.95(5)
O(4)-S(1)-C(20)	108.57(5)
N(1)-S(1)-C(20)	101.44(5)
O(2)-Si(1)-O(1)	113.50(4)
O(2)-Si(1)-C(16)	103.42(5)
O(1)-Si(1)-C(16)	101.80(5)
O(2)-Si(1)-C(12)	113.68(5)
O(1)-Si(1)-C(12)	107.85(5)
C(16)-Si(1)-C(12)	116.13(5)
C(6)-N(1)-C(1)	59.51(7)
C(6)-N(1)-S(1)	117.90(7)
C(1)-N(1)-S(1)	122.49(7)
C(7)-O(1)-Si(1)	132.84(7)
C(8)-O(2)-Si(1)	142.64(7)
C(6)-C(1)-N(1)	59.92(7)
C(6)-C(1)-C(7)	115.92(9)
N(1)-C(1)-C(7)	123.70(9)
C(6)-C(1)-C(2)	120.75(9)
N(1)-C(1)-C(2)	110.69(9)
C(7)-C(1)-C(2)	115.11(9)
C(1)-C(2)-C(3)	114.73(9)
C(4)-C(3)-C(2)	113.22(10)
C(3)-C(4)-C(5)	112.79(9)
C(6)-C(5)-C(4)	110.70(9)
C(6)-C(5)-C(8)	104.93(8)
C(4)-C(5)-C(8)	117.13(9)
C(1)-C(6)-N(1)	60.57(7)
C(1)-C(6)-C(5)	120.62(9)
N(1)-C(6)-C(5)	120.55(9)
O(1)-C(7)-C(1)	107.16(8)
O(2)-C(8)-C(9)	108.18(9)
O(2)-C(8)-C(5)	111.42(8)
C(9)-C(8)-C(5)	113.99(9)
C(11)-C(9)-C(8)	110.58(9)
C(11)-C(9)-C(10)	109.01(10)

C(8)-C(9)-C(10)	111.64(9)
C(13)-C(12)-C(15)	108.11(10)
C(13)-C(12)-C(14)	108.81(11)
C(15)-C(12)-C(14)	106.38(10)
C(13)-C(12)-Si(1)	111.13(8)
C(15)-C(12)-Si(1)	112.49(8)
C(14)-C(12)-Si(1)	109.75(8)
C(18)-C(16)-C(17)	108.61(10)
C(18)-C(16)-C(19)	107.21(10)
C(17)-C(16)-C(19)	107.60(10)
C(18)-C(16)-Si(1)	111.86(8)
C(17)-C(16)-Si(1)	113.04(8)
C(19)-C(16)-Si(1)	108.27(8)
C(25)-C(20)-C(21)	120.75(11)
C(25)-C(20)-S(1)	119.58(9)
C(21)-C(20)-S(1)	119.66(9)
C(22)-C(21)-C(20)	118.91(12)
C(21)-C(22)-C(23)	121.36(12)
C(24)-C(23)-C(22)	118.54(11)
C(24)-C(23)-C(26)	120.63(12)
C(22)-C(23)-C(26)	120.83(12)
C(23)-C(24)-C(25)	120.96(12)
C(20)-C(25)-C(24)	119.45(12)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	17(1)	17(1)	14(1)	-2(1)	-3(1)	-1(1)
Si(1)	11(1)	14(1)	14(1)	-1(1)	-1(1)	-2(1)
N(1)	15(1)	16(1)	14(1)	0(1)	-3(1)	-2(1)
O(1)	12(1)	17(1)	18(1)	2(1)	-2(1)	-2(1)
O(2)	11(1)	18(1)	16(1)	-1(1)	-1(1)	-4(1)
O(3)	25(1)	26(1)	17(1)	2(1)	0(1)	-4(1)
O(4)	22(1)	20(1)	19(1)	-6(1)	-5(1)	0(1)
C(1)	14(1)	15(1)	14(1)	-1(1)	-2(1)	-2(1)
C(2)	18(1)	19(1)	16(1)	-5(1)	-1(1)	-1(1)
C(3)	22(1)	18(1)	19(1)	-5(1)	-4(1)	-3(1)
C(4)	17(1)	18(1)	23(1)	-3(1)	-5(1)	-5(1)
C(5)	12(1)	17(1)	15(1)	-1(1)	-1(1)	-3(1)
C(6)	14(1)	14(1)	14(1)	-1(1)	-2(1)	-2(1)
C(7)	12(1)	16(1)	17(1)	0(1)	-3(1)	-2(1)
C(8)	11(1)	17(1)	15(1)	-2(1)	0(1)	-2(1)
C(9)	13(1)	20(1)	18(1)	-1(1)	-4(1)	-2(1)
C(10)	12(1)	29(1)	27(1)	2(1)	-3(1)	-4(1)
C(11)	17(1)	23(1)	28(1)	2(1)	-6(1)	0(1)
C(12)	16(1)	17(1)	20(1)	-5(1)	-2(1)	-3(1)
C(13)	35(1)	18(1)	28(1)	-5(1)	-6(1)	3(1)
C(14)	21(1)	35(1)	37(1)	-17(1)	-1(1)	-11(1)
C(15)	28(1)	23(1)	19(1)	-7(1)	-2(1)	-6(1)
C(16)	16(1)	18(1)	16(1)	-1(1)	-1(1)	-3(1)
C(17)	24(1)	30(1)	24(1)	-2(1)	2(1)	-12(1)
C(18)	25(1)	26(1)	19(1)	1(1)	-5(1)	0(1)
C(19)	24(1)	24(1)	17(1)	-4(1)	0(1)	-1(1)
C(20)	18(1)	18(1)	16(1)	-2(1)	-4(1)	1(1)
C(21)	24(1)	22(1)	31(1)	-9(1)	-8(1)	-1(1)
C(22)	29(1)	21(1)	35(1)	-12(1)	-7(1)	3(1)
C(23)	23(1)	23(1)	20(1)	0(1)	-2(1)	3(1)
C(24)	20(1)	25(1)	32(1)	-4(1)	-8(1)	-1(1)
C(25)	23(1)	20(1)	30(1)	-7(1)	-8(1)	0(1)
C(26)	25(1)	29(1)	36(1)	-2(1)	-1(1)	7(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for aziridine **8**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	у	Z	U(eq)
H(2A)	8220(15)	8913(14)	1156(11)	20(3)
H(2B)	7820(15)	7691(15)	1935(11)	21(4)
H(3A)	6096(16)	7986(15)	974(12)	22(4)
H(3B)	6034(15)	9515(14)	828(11)	19(3)
H(4A)	4872(16)	7974(15)	2672(12)	25(4)
H(4B)	4005(16)	8850(15)	1899(12)	23(4)
H(5A)	4047(15)	9900(14)	3357(12)	20(3)
H(6A)	6232(14)	10589(14)	3564(11)	15(3)
H(7A)	8749(15)	10530(14)	3102(11)	16(3)
H(7B)	9603(15)	9653(14)	2330(11)	14(3)
H(8A)	4467(14)	11892(13)	2737(10)	11(3)
H(9A)	3574(15)	11033(14)	1077(12)	19(3)
H(10A)	1821(17)	11651(16)	2950(13)	30(4)
H(10B)	2083(16)	10244(16)	2595(12)	25(4)
H(10C)	1249(18)	11378(17)	1971(13)	33(4)
H(11A)	2327(18)	13174(16)	823(13)	35(4)
H(11B)	3936(18)	13311(16)	776(13)	33(4)
H(11C)	2854(17)	13524(16)	1790(13)	30(4)
H(13A)	6901(19)	15197(17)	1009(14)	38(5)
H(13B)	6383(18)	15530(17)	2147(13)	34(4)
H(13C)	5483(19)	14679(17)	1673(14)	37(5)
H(14A)	8703(18)	14690(17)	2532(13)	35(4)
H(14B)	9290(20)	14172(19)	1457(16)	48(5)
H(14C)	9300(20)	13190(19)	2536(15)	45(5)
H(15A)	5677(19)	13110(17)	3366(13)	35(4)
H(15B)	6651(17)	14021(16)	3646(13)	30(4)
H(15C)	7096(18)	12549(18)	3618(14)	34(4)
H(17A)	8937(18)	14265(18)	-175(13)	34(4)
H(17B)	9954(18)	12965(16)	-50(13)	30(4)
H(17C)	9439(17)	13486(16)	-1110(13)	29(4)
H(18A)	6345(17)	14220(17)	-315(13)	29(4)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for aziridine **8**.

H(18B)	6987(17)	13598(16)	-1305(13)	30(4)
H(18C)	5879(17)	12867(15)	-462(12)	25(4)
H(19A)	7464(17)	10788(16)	-387(12)	28(4)
H(19B)	9047(17)	10856(15)	-278(12)	26(4)
H(19C)	8475(17)	11542(15)	-1302(13)	29(4)
H(21A)	8431(17)	6116(16)	3913(13)	30(4)
H(22A)	10658(19)	4998(19)	3565(14)	40(5)
H(24A)	12447(18)	7817(17)	4380(13)	35(4)
H(25A)	10303(19)	9002(18)	4687(14)	39(5)
H(26A)	13800(30)	5750(30)	4060(20)	85(8)
H(26B)	13150(30)	4620(30)	3880(20)	77(8)
H(26C)	13560(30)	5600(30)	3050(20)	90(9)

Table 6. Torsion angles [°] for aziridine 8.

O(3)-S(1)-N(1)-C(6)	109.81(8)
O(4)-S(1)-N(1)-C(6)	-19.42(9)
C(20)-S(1)-N(1)-C(6)	-135.55(8)
O(3)-S(1)-N(1)-C(1)	179.72(8)
O(4)-S(1)-N(1)-C(1)	50.49(10)
C(20)-S(1)-N(1)-C(1)	-65.63(9)
O(2)-Si(1)-O(1)-C(7)	-47.50(11)
C(16)-Si(1)-O(1)-C(7)	-157.95(10)
C(12)-Si(1)-O(1)-C(7)	79.37(10)
O(1)-Si(1)-O(2)-C(8)	86.35(12)
C(16)-Si(1)-O(2)-C(8)	-164.20(11)
C(12)-Si(1)-O(2)-C(8)	-37.40(13)
S(1)-N(1)-C(1)-C(6)	-105.59(9)
C(6)-N(1)-C(1)-C(7)	102.76(11)
S(1)-N(1)-C(1)-C(7)	-2.84(14)
C(6)-N(1)-C(1)-C(2)	-114.38(10)
S(1)-N(1)-C(1)-C(2)	140.03(8)
C(6)-C(1)-C(2)-C(3)	13.44(15)
N(1)-C(1)-C(2)-C(3)	79.94(12)
C(7)-C(1)-C(2)-C(3)	-133.74(10)
C(1)-C(2)-C(3)-C(4)	-35.19(14)
C(2)-C(3)-C(4)-C(5)	57.30(13)

C(3)-C(4)-C(5)-C(6)	-54.20(13)
C(3)-C(4)-C(5)-C(8)	66.01(12)
C(7)-C(1)-C(6)-N(1)	-115.56(10)
C(2)-C(1)-C(6)-N(1)	97.51(11)
N(1)-C(1)-C(6)-C(5)	-110.14(11)
C(7)-C(1)-C(6)-C(5)	134.30(10)
C(2)-C(1)-C(6)-C(5)	-12.63(15)
S(1)-N(1)-C(6)-C(1)	113.18(8)
C(1)-N(1)-C(6)-C(5)	110.25(11)
S(1)-N(1)-C(6)-C(5)	-136.57(9)
C(4)-C(5)-C(6)-C(1)	32.09(14)
C(8)-C(5)-C(6)-C(1)	-95.16(11)
C(4)-C(5)-C(6)-N(1)	-39.63(13)
C(8)-C(5)-C(6)-N(1)	-166.88(9)
Si(1)-O(1)-C(7)-C(1)	52.06(13)
C(6)-C(1)-C(7)-O(1)	-83.54(11)
N(1)-C(1)-C(7)-O(1)	-153.32(9)
C(2)-C(1)-C(7)-O(1)	65.27(12)
Si(1)-O(2)-C(8)-C(9)	146.34(10)
Si(1)-O(2)-C(8)-C(5)	-87.60(13)
C(6)-C(5)-C(8)-O(2)	51.82(11)
C(4)-C(5)-C(8)-O(2)	-71.39(12)
C(6)-C(5)-C(8)-C(9)	174.61(9)
C(4)-C(5)-C(8)-C(9)	51.40(13)
O(2)-C(8)-C(9)-C(11)	-62.66(12)
C(5)-C(8)-C(9)-C(11)	172.80(9)
O(2)-C(8)-C(9)-C(10)	175.79(9)
C(5)-C(8)-C(9)-C(10)	51.25(13)
O(2)-Si(1)-C(12)-C(13)	-70.05(9)
O(1)-Si(1)-C(12)-C(13)	163.18(8)
C(16)-Si(1)-C(12)-C(13)	49.78(10)
O(2)-Si(1)-C(12)-C(15)	51.33(10)
O(1)-Si(1)-C(12)-C(15)	-75.44(9)
C(16)-Si(1)-C(12)-C(15)	171.16(8)
O(2)-Si(1)-C(12)-C(14)	169.55(8)
O(1)-Si(1)-C(12)-C(14)	42.78(10)
C(16)-Si(1)-C(12)-C(14)	-70.62(10)
O(2)-Si(1)-C(16)-C(18)	48.39(9)

O(1)-Si(1)-C(16)-C(18)	166.33(8)
C(12)-Si(1)-C(16)-C(18)	-76.85(9)
O(2)-Si(1)-C(16)-C(17)	171.36(8)
O(1)-Si(1)-C(16)-C(17)	-70.70(9)
C(12)-Si(1)-C(16)-C(17)	46.12(10)
O(2)-Si(1)-C(16)-C(19)	-69.53(8)
O(1)-Si(1)-C(16)-C(19)	48.41(9)
C(12)-Si(1)-C(16)-C(19)	165.23(8)
O(3)-S(1)-C(20)-C(25)	-122.15(10)
O(4)-S(1)-C(20)-C(25)	7.13(12)
N(1)-S(1)-C(20)-C(25)	126.61(10)
O(3)-S(1)-C(20)-C(21)	56.77(11)
O(4)-S(1)-C(20)-C(21)	-173.95(9)
N(1)-S(1)-C(20)-C(21)	-54.48(11)
C(25)-C(20)-C(21)-C(22)	0.39(19)
S(1)-C(20)-C(21)-C(22)	-178.51(10)
C(20)-C(21)-C(22)-C(23)	0.7(2)
C(21)-C(22)-C(23)-C(24)	-1.3(2)
C(21)-C(22)-C(23)-C(26)	178.20(13)
C(22)-C(23)-C(24)-C(25)	0.8(2)
C(26)-C(23)-C(24)-C(25)	-178.69(13)
C(21)-C(20)-C(25)-C(24)	-0.85(19)
S(1)-C(20)-C(25)-C(24)	178.04(10)
C(23)-C(24)-C(25)-C(20)	0.3(2)

III. Selected Spectra

(Next page)

Supplementary Material (ESI) for Dalton Transactions This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

S19

S23

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

