Supporting Information

Detailed Voltammetric and EPR Study of Protonation Reactions Accompanying the One-Electron Reduction of Keggin-type Polyoxometalates, $\left[\mathrm{XV}^{\vee} \mathbf{M}_{11} \mathbf{O}_{40}\right]^{4-}(\mathbf{X}=\mathbf{P}, \mathbf{A s} ; \mathbf{M}=\mathbf{M o}, \mathbf{W})$ in Acetonitrile

Jun-ichi Nambu ${ }^{a}$, Tadaharu Ueda ${ }^{a, *}$, Si-Xuan Guo ${ }^{b}$, John F. Boas ${ }^{c}$, Alan M. Bond ${ }^{b}$
${ }^{\text {a }}$ Department of Applied Science, Faculty of Science, Kochi University, Kochi, 780-8520 Japan
${ }^{\mathrm{b}}$ School of Chemistry, Monash University, Clayton, Vic. 3800, Australia
${ }^{\text {c }}$ School of Physics, Monash University, Clayton, Vic. 3800, Australia

Further description of EPR results

For $\mathrm{PV}^{\mathrm{IV}} \mathrm{Mo}_{11}$, addition of $0.4 \mathrm{mM} \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ resulted in the appearance of two new species, labeled as B and C, where these contributed about 10% for B and 20% for C while the original species, labeled as A, contributed approximately 70% to the total resonance intensity. Addition of 5 mM $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ resulted in the almost complete disappearance of the resonances due to A and B .

In the case of $\mathrm{AsV}^{\mathrm{IV}} \mathrm{Mo}_{11}$, addition of acid to 0.4 mM , resulted in the observation of two additional species, labelled as B and C. The relative concentrations were estimated as 40,25 , and 35% for species A, B and C respectively. After addition of 5.0 mM acid, species A and B comprised only about 5% of the paramagnetic species present, leaving species C as the major component. Species C also showed indications of orthorhombic symmetry.

For $\mathrm{PV}^{\mathrm{IV}} \mathrm{W}_{11}$, the addition of $0.4 \mathrm{mM} \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ resulted in the observation of two species, namely the original species A , and a distinctly different species, labelled as B . Resonances due to species A comprised about 55% and B 45% of the spectral intensity. The spectrum after addition of 5 mM acid was very similar to that of the 0.4 mM acid solution, with both species A and B being present but with their relative concentrations reversed. Spectrum simulations gave the values for the spin Hamiltonian parameters listed in Table 4.

For $\mathrm{AsV}^{\mathrm{IV}} \mathrm{W}_{11}$ in $\mathrm{CH}_{3} \mathrm{CN}$, the addition of $0.4 \mathrm{mM} \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ resulted in two clearly distinguishable species, namely the species present before addition of acid (species A in Table 5) and species B. After addition of $5.0 \mathrm{mM} \mathrm{CF} \mathrm{SO}_{3} \mathrm{H}$, species A had disappeared completely. Resonances due to species B comprised about 70 \% of the total spectral intensity, with resonances due to another new species, species C, accounting for the remaining 30% of the total EPR intensity.

Figure S1. Cyclic voltammograms for reduction of $0.5 \mathrm{mM} \mathrm{AsV}{ }^{V} \mathrm{~W}_{11}$ in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M}$ $\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$) as a function of acid concentration. $\left[\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\right]=$ (a) 0 ; (b) 0.2 ; (c) 0.4 ; (d) 0.5; (e)1.0; (f) 5.0 mM . Scan rate: $100 \mathrm{mV} \mathrm{s}^{-1}$. Arrows indicate new peaks that appear and then shift on addition of more acid.

Figure S2. Cyclic voltammograms for reduction of $0.5 \mathrm{mM} \mathrm{AsV}{ }^{\mathrm{V}} \mathrm{Mo}_{11}$ in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M}$ $\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$) as a function of acid concentration. $\left[\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\right]=$ (a) 0 ; (b) 0.2 ; (c) 0.4 ; (d) 0.5; (e) 0.7; (f) 1.0 ; (g) 5.0 mM . Scan rate: $100 \mathrm{mV} \mathrm{s}^{-1}$.

Table S1. Parameters used in the digital simulation of cyclic voltammograms for reduction of $\mathrm{AsV}^{\mathrm{V}} \mathrm{W}_{11}$ to $\mathrm{AsV}^{\mathrm{IV}} \mathrm{W}_{11}$ in acidified acetonitrile solution

Heterogeneous reactions

Process	$\mathbf{A}+\mathbf{e}^{-}=\mathbf{B}$	$\mathbf{H A}+\mathbf{e}^{-}=\mathbf{H B}$	$\mathbf{H}_{2} \mathbf{A}+\mathbf{e}^{-}=\mathbf{H}_{\mathbf{2}} \mathbf{B}$
$\mathrm{E}_{\text {mid }} / \mathrm{mV}$	-230	170	400

Homogeneous reactions

Process	$\mathrm{HA} \rightleftarrows \mathrm{A}+\mathrm{H}^{+}$	$\mathrm{H}_{2} \mathrm{~A} \rightleftarrows \mathrm{HA}+\mathrm{H}^{+}$	$\mathbf{H B} \rightleftarrows \mathrm{B}+\mathbf{H}^{+}$	$\mathrm{H}_{2} \mathrm{~B} \rightleftarrows \mathrm{HB}+\mathrm{H}^{+}$
Acid dissociation const. K(M)	$\begin{gathered} \mathrm{K}_{\mathrm{HA}} \\ 2.00 \times 10^{-6} \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{H} 2 \mathrm{~A}} \\ 1.21 \times 10^{-3} \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{HB}} \\ 3.47 \times 10^{-13} \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{H} 2 \mathrm{~B}} \\ 1.57 \times 10^{-7} \end{gathered}$
Forward rate const. $\mathrm{k}_{\mathrm{f}}\left(\mathrm{s}^{-1}\right)$	$\begin{gathered} \mathrm{k}_{\mathrm{fHA}} \\ 2.00 \times 10^{4} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{fH} 2 \mathrm{~A}} \\ 1.21 \times 10^{7} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{fHB}} \\ 3.47 \times 10^{-3} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{fH} 2 \mathrm{~B}} \\ 1.57 \times 10^{3} \end{gathered}$
const. $\mathrm{k}_{\mathrm{f}}\left(\mathrm{s}^{-1}\right)$ Back rate const. $\mathrm{k}_{\mathrm{b}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$\begin{gathered} 2.00 \times 10^{4} \\ \mathrm{k}_{\mathrm{bHA}} \\ 1.00 \times 10^{10} \end{gathered}$	$\begin{gathered} 1.21 \times 10^{7} \\ \mathrm{k}_{\mathrm{bH} 2 \mathrm{~A}} \\ 1.00 \times 10^{10} \end{gathered}$	$\begin{gathered} 3.47 \times 10^{-3} \\ \mathrm{k}_{\mathrm{bHB}} \\ 1.00 \times 10^{10} \end{gathered}$	$\begin{gathered} 1.57 \times 10^{3} \\ \mathrm{k}_{\mathrm{bH} 2 \mathrm{~B}} \\ 1.00 \times 10^{10} \end{gathered}$

Disproportionation reaction

Process	$\mathbf{2 H A} \rightleftarrows \mathbf{A}+\mathbf{H}_{\mathbf{2}} \mathbf{A}$	$\mathbf{2 H B} \rightleftarrows \mathbf{B}+\mathbf{H}_{\mathbf{2}} \mathbf{B}$
Equilibrium const.	Keq_{1}	Keq_{2}
$\mathrm{~K}_{\text {eq }}(\mathrm{M})$	1.66×10^{-3}	2.22×10^{-6}

A: $\left[\mathrm{AsV}^{\mathrm{V}} \mathrm{W}_{11} \mathrm{O}_{40}\right]^{4-} ; \mathrm{B}:\left[\mathrm{AsV}^{\mathrm{IV}} \mathrm{W}_{11} \mathrm{O}_{40}\right]^{5-}$

Table S2. Parameters used in the digital simulation of cyclic voltammograms for reduction of $\mathrm{AsV}^{\mathrm{V}} \mathrm{Mo}_{11}$ to $\mathrm{AsV}^{\mathrm{IV}} \mathrm{Mo}_{11}$ in acidified acetonitrile solution

Heterogeneous reactions

Process	$\mathbf{A}+\mathbf{e}^{-}=\mathbf{B}$	$\mathbf{H A}+\mathbf{e}^{-}=\mathbf{H B}$	$\mathbf{H}_{\mathbf{2}} \mathbf{A}+\mathbf{e}^{-}=\mathbf{H}_{\mathbf{2}} \mathbf{B}$	$\mathbf{H}_{\mathbf{3}} \mathbf{A}+\mathbf{e}^{-}=\mathbf{H}_{\mathbf{3}} \mathbf{B}$
$\mathrm{E}_{\text {mid }} / \mathrm{mV}$	-355	105	425	775

Homogeneous reactions

Process	$\mathbf{H A} \rightleftarrows \mathbf{A +} \mathbf{H}^{+}$	$\mathbf{H}_{2} \mathrm{~A} \rightleftarrows \mathbf{H A}+\mathbf{H}^{+}$	$\mathbf{H}_{3} \mathrm{~A} \rightleftarrows \mathrm{H}_{2} \mathrm{~A}+\mathrm{H}^{+}$
Acid dissociation const. K(M)	$\begin{gathered} \mathrm{K}_{\mathrm{HA}} \\ 7.02 \times 10^{-7} \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{H} 2 \mathrm{~A}} \\ 1.83 \times 10^{-2} \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{H} 3 \mathrm{~A}} \\ 6.53 \end{gathered}$
Forward rate const. $\mathrm{k}_{\mathrm{f}}\left(\mathrm{s}^{-1}\right)$	$\begin{gathered} \mathrm{k}_{\mathrm{fHA}} \\ 7.02 \times 10^{3} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{fH} 2 \mathrm{~A}} \\ 1.83 \times 10^{8} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{fH} 3 \mathrm{~A}} \\ 6.53 \times 10^{10} \end{gathered}$
Back rate const. $\mathrm{k}_{\mathrm{b}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$\begin{gathered} \mathrm{k}_{\mathrm{bHA}} \\ 1.00 \times 10^{10} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{bH} 2 \mathrm{~A}} \\ 1.00 \times 10^{10} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{bH} 3 \mathrm{~A}} \\ 1.00 \times 10^{10} \end{gathered}$
Process	$\mathbf{H B} \rightleftarrows \mathbf{B}+\mathbf{H}^{+}$	$\mathrm{H}_{2} \mathrm{~B} \rightleftarrows \mathrm{HB}+\mathrm{H}^{+}$	$\mathrm{H}_{3} \mathrm{~B} \rightleftarrows \mathrm{H}_{2} \mathrm{~B}+\mathrm{H}^{+}$
Acid dissociation const. K(M)	$\begin{gathered} \mathrm{K}_{\mathrm{HB}} \\ 1.18 \times 10^{-14} \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{H} 2 \mathrm{~B}} \\ 7.14 \times 10^{-8} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{H} 3 \mathrm{~B}} \\ 1.17 \times 10^{-5} \\ \hline \end{gathered}$
Forward rate const. $\mathrm{k}_{\mathrm{f}}\left(\mathrm{s}^{-1}\right)$	$\begin{gathered} \mathrm{k}_{\mathrm{fHB}} \\ 1.18 \times 10-{ }^{4} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{fH} 2 \mathrm{~B}} \\ 7.14 \times 10^{2} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{fH} 3 \mathrm{~B}} \\ 1.17 \times 10^{5} \end{gathered}$
Back rate const. $\mathrm{k}_{\mathrm{b}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$\begin{gathered} \mathrm{k}_{\mathrm{bHB}} \\ 1.00 \times 10^{10} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{bH} 2 \mathrm{~B}} \\ 1.00 \times 10^{10} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{bH} 3 \mathrm{~B}} \\ 1.00 \times 10^{10} \\ \hline \end{gathered}$

Disproportionation reactions

Process	$\mathbf{2 H A} \rightleftarrows$	$\mathbf{2 H B} \rightleftarrows$	$\mathbf{2 H}_{\mathbf{2}} \mathbf{A} \rightleftarrows$	$\mathbf{2 H}_{\mathbf{2}} \mathbf{B} \rightleftarrows$
	$\mathbf{A +}+\mathbf{H}_{\mathbf{2}} \mathbf{A}$	$\mathbf{B}+\mathbf{H}_{\mathbf{2}} \mathbf{B}$	$\mathbf{H A}+\mathbf{H}_{\mathbf{3}} \mathbf{A}$	$\mathbf{H B}+\mathbf{H}_{\mathbf{3}} \mathbf{B}$
Equilibrium	Keq_{1}	Keq_{2}	Keq_{3}	Keq_{4}
const. $\mathrm{K}_{\text {eq }}(\mathrm{M})$	3.84×10^{-5}	1.65×10^{-7}	2.80×10^{-3}	6.09×10^{-3}

A: $\left[\mathrm{AsV}^{\mathrm{V}} \mathrm{Mo}_{11} \mathrm{O}_{40}\right]^{4} ; \mathrm{B}:\left[\mathrm{AsV}^{\left.\mathrm{IV}^{\mathrm{lV}} \mathrm{Mo}_{11} \mathrm{O}_{40}\right]^{5-}}\right.$

