## **Supporting Information**

## Detailed Voltammetric and EPR Study of Protonation Reactions Accompanying the One-Electron Reduction of Keggin-type Polyoxometalates, $[XV^VM_{11}O_{40}]^{4-}$ (X=P, As; M=Mo, W) in Acetonitrile

Jun-ichi Nambu<sup>a</sup>, Tadaharu Ueda<sup>a,\*</sup>, Si-Xuan Guo<sup>b</sup>, John F. Boas<sup>c</sup>, Alan M. Bond<sup>b</sup>

<sup>a</sup> Department of Applied Science, Faculty of Science, Kochi University, Kochi, 780-8520 Japan
<sup>b</sup> School of Chemistry, Monash University, Clayton, Vic. 3800, Australia
<sup>c</sup> School of Physics, Monash University, Clayton, Vic. 3800, Australia

## Further description of EPR results

For  $PV^{IV}Mo_{11}$ , addition of 0.4 mM CF<sub>3</sub>SO<sub>3</sub>H resulted in the appearance of two new species, labeled as B and C, where these contributed about 10 % for B and 20% for C while the original species, labeled as A, contributed approximately 70% to the total resonance intensity. Addition of 5 mM CF<sub>3</sub>SO<sub>3</sub>H resulted in the almost complete disappearance of the resonances due to A and B.

In the case of AsV<sup>IV</sup>Mo<sub>11</sub>, addition of acid to 0.4 mM, resulted in the observation of two additional species, labelled as B and C. The relative concentrations were estimated as 40, 25, and 35 % for species A, B and C respectively. After addition of 5.0 mM acid, species A and B comprised only about 5 % of the paramagnetic species present, leaving species C as the major component. Species C also showed indications of orthorhombic symmetry.

For  $PV^{IV}W_{11}$ , the addition of 0.4 mM CF<sub>3</sub>SO<sub>3</sub>H resulted in the observation of two species, namely the original species A, and a distinctly different species, labelled as B. Resonances due to species A comprised about 55% and B 45% of the spectral intensity. The spectrum after addition of 5 mM acid was very similar to that of the 0.4 mM acid solution, with both species A and B being present but with their relative concentrations reversed. Spectrum simulations gave the values for the spin Hamiltonian parameters listed in Table 4.

For  $AsV^{IV}W_{11}$  in CH<sub>3</sub>CN, the addition of 0.4 mM CF<sub>3</sub>SO<sub>3</sub>H resulted in two clearly distinguishable species, namely the species present before addition of acid (species A in Table 5) and species B. After addition of 5.0 mM CF<sub>3</sub>SO<sub>3</sub>H, species A had disappeared completely. Resonances due to species B comprised about 70 % of the total spectral intensity, with resonances due to another new species, species C, accounting for the remaining 30 % of the total EPR intensity.

**Figure S1.** Cyclic voltammograms for reduction of 0.5 mM AsV<sup>V</sup>W<sub>11</sub> in CH<sub>3</sub>CN (0.1 M [n-Bu<sub>4</sub>N][PF<sub>6</sub>]) as a function of acid concentration.  $[CF_3SO_3H] = (a) 0$ ; (b) 0.2; (c) 0.4; (d) 0.5; (e)1.0; (f) 5.0 mM. Scan rate: 100 mV s<sup>-1</sup>. Arrows indicate new peaks that appear and then shift on addition of more acid.



**Figure S2.** Cyclic voltammograms for reduction of 0.5 mM AsV<sup>V</sup>Mo<sub>11</sub> in CH<sub>3</sub>CN (0.1 M [n-Bu<sub>4</sub>N][PF<sub>6</sub>]) as a function of acid concentration.  $[CF_3SO_3H] = (a) 0$ ; (b) 0.2; (c) 0.4; (d) 0.5; (e) 0.7; (f) 1.0; (g) 5.0 mM. Scan rate: 100 mV s<sup>-1</sup>.



| Heterogeneous reactions     |                                            |                                    |                                 |                                                                        |  |  |  |
|-----------------------------|--------------------------------------------|------------------------------------|---------------------------------|------------------------------------------------------------------------|--|--|--|
| Process                     | $\mathbf{A} + \mathbf{e}^{-} = \mathbf{B}$ | $HA + e^{-} = HB$                  |                                 | $\mathbf{H}_{2}\mathbf{A} + \mathbf{e}^{-} = \mathbf{H}_{2}\mathbf{B}$ |  |  |  |
| $E_{mid}/mV$                | -230                                       | 170                                |                                 | 400                                                                    |  |  |  |
| Homogeneous reactions       |                                            |                                    |                                 |                                                                        |  |  |  |
| Process                     | $HA \rightleftharpoons A + H^+$            | $H_2A \rightleftharpoons HA + H^+$ | $HB \rightleftharpoons B + H^+$ | $H_2B \rightleftharpoons HB + H^+$                                     |  |  |  |
| Acid dissociation           | $K_{HA}$                                   | - K <sub>H2A</sub>                 | K <sub>HB</sub>                 | - K <sub>H2B</sub>                                                     |  |  |  |
| const. K(M)                 | $2.00 \times 10^{-6}$                      | $1.21 \times 10^{-3}$              | $3.47 \times 10^{-13}$          | $1.57 \times 10^{-7}$                                                  |  |  |  |
| Forward rate                | k <sub>fHA</sub>                           | k <sub>fH2A</sub>                  | k <sub>fHB</sub>                | k <sub>fH2B</sub>                                                      |  |  |  |
| const. $k_f(s^{-1})$        | $2.00 \times 10^{4}$                       | $1.21 \times 10^{7}$               | $3.47 \times 10^{-3}$           | $1.57 \times 10^{3}$                                                   |  |  |  |
| Back rate                   | k <sub>bHA</sub>                           | k <sub>bH2A</sub>                  | k <sub>bHB</sub>                | k <sub>bH2B</sub>                                                      |  |  |  |
| const. $k_b (M^{-1}s^{-1})$ | $1.00 \times 10^{10}$                      | $1.00{	imes}10^{10}$               | $1.00 \times 10^{10}$           | $1.00 \times 10^{10}$                                                  |  |  |  |
|                             | Dis                                        | proportionation reac               | tion                            |                                                                        |  |  |  |

Table S1. Parameters used in the digital simulation of cyclic voltammograms for reduction of  $AsV^{V}W_{11}$  to  $AsV^{IV}W_{11}$  in acidified acetonitrile solution

| Disproportionation reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|--|--|--|--|
| Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2HA \rightleftharpoons A + H_2A$ | $2HB \rightleftharpoons B + H_2B$ |  |  |  |  |
| Equilibrium const.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Keq <sub>1</sub>                  | Keq <sub>2</sub>                  |  |  |  |  |
| $K_{eq}(M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.66 \times 10^{-3}$             | $2.22 \times 10^{-6}$             |  |  |  |  |
| A: $[AsV^{V}W_{11}O_{40}]^{4-}$ ; B: $[AsV^{V}W_{11}O_{40}]^{4-}$ ; | $48V^{IV}W_{11}O_{40}]^{5-1}$     |                                   |  |  |  |  |

**Table S2.** Parameters used in the digital simulation of cyclic voltammograms for reduction of  $AsV^{V}Mo_{11}$  to  $AsV^{IV}Mo_{11}$  in acidified acetonitrile solution

| Heterogeneous reactions      |                                            |                                        |                                                                        |                                      |  |  |  |  |
|------------------------------|--------------------------------------------|----------------------------------------|------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| Process                      | $\mathbf{A} + \mathbf{e}^{-} = \mathbf{B}$ | $HA + e^{-} = HB$                      | $\mathbf{H}_{2}\mathbf{A} + \mathbf{e}^{-} = \mathbf{H}_{2}\mathbf{B}$ | $H_3A + e^2 = H_3B$                  |  |  |  |  |
| $E_{mid}/mV$                 | -355                                       | 105                                    | 425                                                                    | 775                                  |  |  |  |  |
|                              |                                            |                                        |                                                                        |                                      |  |  |  |  |
| Homogeneous reactions        |                                            |                                        |                                                                        |                                      |  |  |  |  |
| Process                      | $HA \rightleftharpoons A + H^+$            | H <sub>2</sub> A ≓                     | $HA + H^+$                                                             | $H_3A \rightleftharpoons H_2A + H^+$ |  |  |  |  |
| Acid dissociation            | $\mathbf{K}_{\mathrm{HA}}$                 | K <sub>H2A</sub>                       |                                                                        | K <sub>H3A</sub>                     |  |  |  |  |
| const. K(M)                  | 7.02×10 <sup>-7</sup>                      | 1.83                                   | ×10 <sup>-2</sup>                                                      | 6.53                                 |  |  |  |  |
| Forward rate                 | k <sub>fHA</sub>                           | k <sub>fH2A</sub>                      |                                                                        | k <sub>fH3A</sub>                    |  |  |  |  |
| const. $k_f(s^{-1})$         | $7.02 \times 10^{3}$                       | 1.83                                   | $3 \times 10^{8}$                                                      | $6.53 \times 10^{10}$                |  |  |  |  |
| Back rate                    | k <sub>bHA</sub>                           | kb                                     | H2A                                                                    | k <sub>bH3A</sub>                    |  |  |  |  |
| const. $k_b (M^{-1}s^{-1})$  | $1.00{	imes}10^{10}$                       | $1.00 \times 10^{10}$                  |                                                                        | $1.00 \times 10^{10}$                |  |  |  |  |
| Process                      | $HB \rightleftharpoons B + H^+$            | $H_2B \rightleftharpoons HB + H^+$     |                                                                        | $H_3B \rightleftharpoons H_2B + H^+$ |  |  |  |  |
| Acid dissociation            | K <sub>HB</sub>                            | K <sub>H2B</sub>                       |                                                                        | K <sub>H3B</sub>                     |  |  |  |  |
| const. K(M)                  | $1.18 \times 10^{-14}$                     | $7.14 \times 10^{-8}$                  |                                                                        | 1.17×10 <sup>-5</sup>                |  |  |  |  |
| Forward rate                 | $k_{fHB}$                                  | k <sub>fH2B</sub>                      |                                                                        | k <sub>fH3B</sub>                    |  |  |  |  |
| const. $k_f(s^{-1})$         | $1.18 \times 10^{-4}$                      | $7.14 \times 10^2$                     |                                                                        | $1.17 \times 10^{5}$                 |  |  |  |  |
| Back rate                    | $k_{bHB}$                                  | k <sub>bH2B</sub>                      |                                                                        | k <sub>bH3B</sub>                    |  |  |  |  |
| const. $k_b (M^{-1}s^{-1})$  | $1.00{	imes}10^{10}$                       | $1.00 \times 10^{10}$                  |                                                                        | $1.00 \times 10^{10}$                |  |  |  |  |
|                              |                                            |                                        |                                                                        |                                      |  |  |  |  |
| Disproportionation reactions |                                            |                                        |                                                                        |                                      |  |  |  |  |
| Process                      | 2HA ≓                                      | 2HB ⇄                                  | $2H_2A \rightleftharpoons$                                             | 2H <sub>2</sub> B ≓                  |  |  |  |  |
|                              | $A + H_2 A$                                | $\mathbf{B} + \mathbf{H}_2 \mathbf{B}$ | $HA + H_3A$                                                            | $HB + H_3B$                          |  |  |  |  |
| Equilibrium                  | Keq <sub>1</sub>                           | Keq <sub>2</sub>                       | Keq <sub>3</sub>                                                       | Keq <sub>4</sub>                     |  |  |  |  |
| const. K <sub>eq</sub> (M)   | 3.84×10 <sup>-5</sup>                      | $1.65 \times 10^{-7}$                  | 2.80×10 <sup>-3</sup>                                                  | 6.09×10 <sup>-3</sup>                |  |  |  |  |

 $\overline{A: [AsV^VMo_{11}O_{40}]^4}; B: [AsV^{IV}Mo_{11}O_{40}]^5}$