Electronic Supplementary Information

New chiral organoantimony(III) compounds containing intramolecular N→Sb interactions – solution behaviour and solid state structures

Dana Copolovici,^a Vilma R. Bojan,^a Ciprian I. Raț,^a Anca Silvestru,^a Hans J. Breunig^b and Cristian Silvestru^{*a}

^a Facultatea de Chimie si Inginerie Chimica, Universitatea Babes-Bolyai, RO-400028, Cluj-Napoca, Romania. Fax: (+40) 264-590818; Tel: (+40) 264-593833; E-mail: cristi@chem.ubbcluj.ro

^b Institut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334, Bremen, Germany. Fax: (+49) 421-218-62809; Tel: (+49) 421-218-63150; E-mail: hbreunig@uni-bremen.de

[2-(Me₂NCH₂)C₆H₄]PhSbCl (1)

Coalescence of the NMe₂ resonances in C₆D₆

¹H NMR (200 MHz, 20 °C, C₆D₆): δ 1.33 [3 H, s, N(CH₃)₂ (A)], 1.62 [3 H, s, N(CH₃)₂ (B)], AB spin system with A at 2.76 and B at 2.96 ppm (2 H, CH₂, ²*J*_{HH} 14.2 Hz), 6.82 (1 H, d, H-3, C₆H₄, ³*J*_{HH} 7.4 Hz), 7.02 (3 H, m, H-*meta*+*para*, C₆H₅), 7.15 (1 H, m, H-4, C₆H₄, partially overlapped by residual solvent resonance), 7.30 (1 H, dd, H-5, C₆H₄, ³*J*_{HH} 7.4 Hz), 7.51 (2 H, m, H-*ortho*, C₆H₅), 8.99 (1 H, dd, H-6, C₆H₄, ³*J*_{HH} 7.5, ⁴*J*_{HH} 1.1 Hz).

¹H NMR (200 MHz, 65 °C, C₆D₆): δ 1.58 [6 H, s,br, N(CH₃)₂], AB spin system with A at 2.92 and B at 3.06 ppm (2 H, CH₂, ²J_{HH} 14.1 Hz), 6.84 (1 H, d, H-3, C₆H₄, ³J_{HH} 7.4 Hz), 7.04 (3 H, m, H-*meta*+*para*, C₆H₅), 7.14 (1 H, m, H-4, C₆H₄, partially overlapped by residual solvent resonance), 7.30 (1 H, dd, H-5, C₆H₄, ³J_{HH} 7.4 Hz), 7.51 (2 H, m, H-*ortho*, C₆H₅), 8.88 (1 H, d, H-6, C₆H₄, ³J_{HH} 7.4 Hz).

Coalescence of both NMe_2 resonances and methylene AB system, respectively, in DMSO- d_6

¹H NMR (200 MHz, 20 °C, DMSO-d₆): δ 2.01 [3 H, s, N(CH₃)₂ (A)], 2.41 [3 H, s, N(CH₃)₂ (B)], AB spin system with A at 3.48 (partially overlapped by water resonance) and B at 3.83 ppm (2 H, CH₂, ²*J*_{HH} 14.6 Hz), 7.35 (4 H, m, H-3, C₆H₄, and H-*meta*+*para*, C₆H₅), 7.47 (4 H, m, H-4,5, C₆H₄, and H-*ortho*, C₆H₅), 8.30 (1 H, m, H-6, C₆H₄).

¹H NMR (200 MHz, 50 °C, DMSO-d₆): δ 2.22 [6 H, s,br, N(CH₃)₂], AB spin system with A at 3.51 and B at 3.83 ppm (2 H, CH₂, ²*J*_{HH} 14.2 Hz), 7.35 (4 H, m, H-3, C₆H₄, and H-*meta*+*para*, C₆H₅), 7.47 (4 H, m, H-4,5, C₆H₄, and H-*ortho*, C₆H₅), 8.32 (1 H, m, H-6, C₆H₄).

¹H NMR (200 MHz, 78 °C, DMSO-d₆): δ 2.23 [6 H, s,br, N(CH₃)₂], 3.69 (2 H, s,br, CH₂), 7.34 (4 H, m, H-3, C₆H₄, and H-*meta*+*para*, C₆H₅), 7.48 (4 H, m, H-4,5, C₆H₄, and H-*ortho*, C₆H₅), 8.34 (1 H, m, H-6, C₆H₄).

[2-(Me₂NCH₂)C₆H₄]PhSbBr (2)

- the crystal contains a 1:1 mixture of (R_N, A_{Sb}) and (S_N, C_{Sb}) isomers

Figure S1. Molecular structure of (R_N, A_{Sb}) -2 isomer (*left*) and (S_N, C_{Sb}) -2 isomer (*right*) in the crystal of 2, showing the intramolecular bromine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

Figure S2. View of a chain polymer based on Br···H_{aryl} and C-H_{methylene}··· π (Ph_{centroid}) contacts between (S_N, C_{Sb})-2 isomers in the crystal of 2 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (x, -1 + y, z), (0.5 - x, -0.5 + y, 0.5 - z), (0.5 - x, 0.5 + y, 0.5 - z) and (0.5 - x, 0.5 + y, 0.5 - z) are given by "a", "b", "c" and "d", respectively].

-	intermolecular distance	$Br(1)\cdots H(5a)$	3.12 Å
		$C(7)$ -H(7A)···· π (Ph _{centroid})	2.95 Å

Figure S3. View along *b* axis of a chain polymer built from (S_N, C_{Sb}) -2 isomers in the crystal of 2 through Br···H_{aryl} and C-H_{methylene}···· π (Ph_{centroid}) contacts.

Figure S4. View of a layer with inter-chain Br···H_{aryl} contacts between alternating chain polymers built from (S_N, C_{Sb}) -2 and (R_N, A_{Sb}) -2 isomers, respectively, in the crystal of 2.

- inter-chain distance
- Br(1)…H(13) 3.14 Å

 $\sum r_{vdW}(Br,H)$ 3.15 Å

[2-(Me₂NCH₂)C₆H₄]PhSbI (3)

Figure S5. ORTEP representation at 30% probability and atom numbering scheme for (S_{N}, C_{Sb}) -3 isomer. Hydrogen atoms are omitted.

- the crystal contains a 1:1 mixture of (R_N, A_{Sb}) and (S_N, C_{Sb}) isomers

Figure S6. Molecular structure of (R_N, A_{Sb}) -3 isomer (*left*) and (S_N, C_{Sb}) -3 isomer (*right*) in the crystal of 3, showing the intramolecular iodine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance I(1)····H(6) 3.04 Å $\sum r_{vdW}(I,H)$ 3.35 Å

Figure S7. View of a chain polymer based on I···H_{methyl} contacts between alternating (S_N , C_{Sb})-**3** and (R_N , A_{Sb})-**3** isomers in the crystal of **3** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (x, 0.5 – y, 0.5 + z) and (x, 0.5 – y, -0.5 + z) are given by "a" and "b", respectively].

- intermolecular distance I(1)···H(9B) 3.22 Å $\sum r_{vdW}(I,H)$ 3.35 Å

Figure S8. View along *c* axis of a chain polymer in the crystal of 3.

Figure S9. View along *c* axis of parallel chain polymers in the crystal of 3.

- no further I···H contacts between parallel chains.

[2-(Me₂NCH₂)C₆H₄]Ph₂Sb (4)

- the crystal contains a 1:1 mixture of (R_N, C_{Sb}) and (S_N, A_{Sb}) isomers

Figure S10. Molecular structure of (R_N, C_{Sb}) -4 isomer (*left*) and (S_N, A_{Sb}) -4 isomer (*right*) in the crystal of 4.

Figure S11. View of a chain polymer based on C-H_{aryl}··· π (Ph_{centroid}) contacts between (R_N, C_{Sb})-4 isomers in the crystal of 4 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (x, y, -1 + z) and (x, y, 1 + z) are given by "a" and "b", respectively].

- intra-chain distance

C(17)-H(17)···· π (Ph_{centroid}) 2.80 Å

Figure S12. View of a layer of (R_N, C_{Sb}) -4 isomers based on C-H_{aryl}···· π (Ph_{centroid}) contacts in the crystal of 4 (only hydrogen atoms involved in intermolecular contacts are shown).

- inter-chain distance
- C(20)-H(20)··· π (Ph_{centroid}) 2.93 Å

- no further contacts between parallel, alternative layers of (R_N, C_{Sb}) and (S_N, A_{Sb}) isomers, respectively.

Figure S13. View along c axis of alternative layers of (R_N, C_{Sb}) and (S_N, A_{Sb}) isomers, respectively, in the crystal of 4.

[2-(Me₂NCH₂)C₆H₄]₂PhSb (5)

Figure S14. ORTEP representation at 30% probability and atom numbering scheme for $(S_{N3}, S_{N4}, C_{Sb2})$ -**5b** isomer. Hydrogen atoms are omitted.

- the crystal contains a 1:1 mixture of $(R_{N1}, R_{N2}, A_{Sb1}) / (S_{N1}, S_{N2}, C_{Sb1})$ -**5a** and $(R_{N3}, R_{N4}, A_{Sb2}) / (S_{N3}, S_{N4}, C_{Sb2})$ -**5b** isomers

Figure S15. Molecular structure of (a) $(R_{N1}, R_{N2}, A_{Sb1})$ -**5a** (*left*) and $(S_{N1}, S_{N2}, C_{Sb1})$ -**5a** (*right*) isomers, and (b) $(R_{N3}, R_{N4}, A_{Sb2})$ -**5b** isomer (*left*) and $(S_{N3}, S_{N4}, C_{Sb2})$ -**5b** isomer (*right*), in the crystal of **5**.

Figure S16. View along axis *a* of a chain polymer based on C-H_{methyl}··· π (Ph_{centroid}) contacts between alternating (R_{N1} , R_{N2} , A_{Sb1})-**5a** and (S_{N3} , S_{N4} , C_{Sb2})-**5b** isomers in the crystal of **5** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (x, y, 1 + z) and (x, y, -1 + z) are given by "a" and "b", respectively].

- intra chain distance C(17)-H(17)···· π (Ph_{centroid}) 3.06 Å
- no further contacts between parallel chains.

[2-(Me₂NCH₂)C₆H₄]PhMesSb (6)

- the crystal contains a 1:1 mixture of (R_N, A_{Sb}) and (S_N, C_{Sb}) isomers

Figure S17. Molecular structure of (R_N, A_{Sb}) -6 isomer (*left*) and (S_N, C_{Sb}) -4 isomer (*right*) in the crystal of 6.

Figure S18. View of a chain polymer based on C-H_{aryl}··· π and C-H_{methyl}··· π (Ph_{centroid}) contacts between (R_N, A_{Sb})-6 isomers in the crystal of 6 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (-1 + x, y, z) and (1 + x, y, z) are given by "a" and "b", respectively].

-	intra chain distance	$C(21)$ - $H(21)$ ···· π (Ph _{centroid})	2.90 Å
		$C(8)$ -H(8A)···· π (Ph _{centroid})	2.94 Å

Figure S19. View of a layer of (R_N, A_{Sb}) -6 isomers based on C-H_{methyl}···· π (Ph_{centroid}) contacts in the crystal of 6 (only hydrogen atoms involved in intermolecular contacts are shown).

- inter-chain distance

C(16)-H(16B)···· π (Ph_{centroid}) 2.97 Å

Figure S20. View of a double-layer association between layers of (R_N, A_{Sb}) and (S_N, C_{Sb}) isomers, respectively, in the crystal of **6**.

- inter-layer distance C(23)-H(23)···· π (Ph_{centroid}) 2.98 Å

[2-(Me₂NCH₂)C₆H₄]MesSbBr (7)

- the crystal contains a 1:1 mixture of (R_N, C_{Sb}) and (S_N, A_{Sb}) isomers

Figure S21. Molecular structure of (R_N, C_{Sb}) -7 isomer (*left*) and (S_N, A_{Sb}) -7 isomer (*right*) in the crystal of 7, showing the intramolecular bromine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance $Br(1)\cdots H(6) 2.86 \text{ Å} \qquad \sum r_{vdW}(Br,H) 3.15 \text{ Å}$

Figure S22. View of a dimer based on Br···H_{aryl} contacts between (R_N, C_{Sb}) and (S_N, A_{Sb}) -7 isomers in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1 - x, 1 - y, -z) are given by "prime"].

- intermolecular distance Br(1)····H(12a) 3.07 Å

Figure S23. View of a columnar polymer of $(R_N, C_{Sb}) / (S_N, A_{Sb})$ -7 dimer units based on Br...H_{methyl} contacts in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1 - x, 1 - y, -z), (x, 1 - y, z), (1 - x, -y, -z), (x, 1 + y, z) and (1 - x, 2 - y, -z) are given by "prime", "a", "prime a", "b" and "prime b", respectively].

- inter-dimer distance

Br(1)…H(8Cb) 3.10 Å

[2-(Me₂NCH₂)C₆H₄]MesSbBr (7)

Figure S23a. ¹H NMR spectra of 7: (*up*) aliphatic region, and (*down*) aromatic region [*violet* - in CDCl₃, at r.t.; *black* - in DMSO-d₆, at 20 °C; *green* - in DMSO-d₆, at 45 °C].

Coalescence of resonances for the aromatic protons of mesityl group in DMSO-d₆

¹H NMR (300 MHz, 20 °C, DMSO-d₆): δ 1.80 (3 H, s, *ortho*-CH₃), 2.12 [3 H, s, N(CH₃)₂ (A)], 2.20 (3 H, s, *para*-CH₃), 2.36 [3 H, s, N(CH₃)₂ (B)], 2.70 (3 H, s, *ortho*-CH₃), AB spin system with A at 3.633 and B at 3.728 ppm (2 H, CH₂, ²J_{HH} 14.40 Hz), 6.78 (1 H, s,br, H-3',5', C₆H₂), 6.93 (1 H, s,br, H-3',5', C₆H₂), 7.30 (1 H, m, H-3, C₆H₄), 7.41 (2 H, ddd, H-4,5, C₆H₄), 8.40 (1 H, m, H-6, C₆H₄).

¹H NMR (300 MHz, 45 °C, DMSO-d₆): δ 1.87 (3 H, s,br, *ortho*-CH₃), 2.12 [3 H, s, N(CH₃)₂ (A)], 2.21 (3 H, s, *para*-CH₃), 2.38 [3 H, s, N(CH₃)₂ (B)], 2.68 (3 H, s,br, *ortho*-CH₃), AB spin system with A at 3.651 and B at 3.734 ppm (2 H, CH₂, ²J_{HH} 14.20 Hz), 6.86 (2 H, s,br, H-3',5', C₆H₂), 7.30 (1 H, m, H-3, C₆H₄), 7.41 (2 H, ddd, H-4,5, C₆H₄), 8.42 (1 H, m, H-6, C₆H₄).

[2-(Me₂NCH₂)C₆H₄]MesSbI (8)

- the crystal contains a 1:1 mixture of (R_N, C_{Sb}) and (S_N, A_{Sb}) isomers

Figure S24. Molecular structure of (R_N, C_{Sb}) -8 isomer (*left*) and (S_N, A_{Sb}) -8 isomer (*right*) in the crystal of 8, showing the intramolecular iodine-hydrogen and C-H_{methyl}··· π (Ph_{centroid}) contacts (only hydrogen atoms involved in intramolecular interactions are shown).

- intramolecular distance I(1)···H(6) 3.06 Å $\sum r_{vdW}(I,H) 3.35$ Å I(1)···H(16B) 3.23 Å C(16)-H(16C)··· π (Ph_{centroid}) 3.02 Å

Figure S25. View of a chain polymer association based on I···H_{methyl} contacts between (S_N, A_{Sb}) -8 isomers in the crystal of 8 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (-1 + x, y, z) and (1 + x, y, z) are given by "a" and "b", respectively].

- intermolecular distance I(1)…H(9Cb) 3.17 Å

Figure S26. View along axis *c* of a layer of (S_N, A_{Sb}) -**8** isomers based on I···H_{methyl}, I···H_{aryl} and C-H_{aryl}··· π (Ph_{centroid}) contacts in the crystal of **8** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (2 - x, 0.5 + y, 0.5 - z) and (2 - x, -0.5 + y, 0.5 - z) are given by "prime" and "double prime", respectively].

- intermolecular distance

I(1)…H(14')	3.31 Å
I(1)…H(4'')	3.34 Å
$C(5)-H(5)\cdots\pi$ (Ph _{centroid})	3.00 Å

Figure S27. View along axis *a* of the 3D structure built from alternating layers of (R_N, C_{Sb}) -8 and (S_N, A_{Sb}) -8 isomers based on C-H_{methyl}··· π (Ph_{centroid}) contacts in the crystal of 8 (only hydrogen atoms involved in intermolecular contacts are shown).

- intermolecular distance C(16)-H(16A)···· π (Ph_{centroid}) 2.99 Å

[2-(Me₂NCH₂)C₆H₄]Mes₂Sb (9)

¹H NMR (200 MHz, 20 °C, C₆D₆): δ 1.79 [6 H, s, N(CH₃)₂], 2.13 (6 H, s, *para*-CH₃), 2.40 (12 H, s, *ortho*-CH₃), 3.35 (2 H, s, CH₂), 6.77 (4 H, s, H-3',5', C₆H₂), 6.91 (1 H, m, H-5, C₆H₄), 7.03 (2 H, m, H-3,4, C₆H₄), 7.91 (1 H, d, H-6, C₆H₄, ³J_{HH} 7.2 Hz).

¹³C-NMR (50 MHz, 20 °C, C₆D₆): 20.98 (s, *para*-CH₃), 26.16 (s, *ortho*-CH₃), 44.31 [s, N(CH₃)₂], 66.21 (s, CH₂), 128.17 (s, C-5), 128.31 (s, C-4), 128.84 (s, C-3), 129.19 (s, C-3',5'), 137.46 (s, C-1'), 138.20 (s, C-6), 139.43 (s, C-4'), 140.13 (s, C-1), 144.99 (s, C-2',6'), 145.26 (s C-2).