Electronic Supplementary Information

New chiral organoantimony(III) compounds containing intramolecular $\mathbf{N} \rightarrow \mathbf{S b}$ interactions - solution behaviour and solid state structures

Dana Copolovici, ${ }^{\text {a }}$ Vilma R. Bojan, ${ }^{\text {a }}$ Ciprian I. Rat,, ${ }^{\text {a }}$ Anca Silvestru, ${ }^{\text {a }}$ Hans J. Breunig ${ }^{\mathrm{b}}$ and Cristian Silvestru* ${ }^{\text {a }}$
${ }^{\text {a }}$ Facultatea de Chimie si Inginerie Chimica, Universitatea Babes-Bolyai, RO-400028, Cluj-Napoca, Romania. Fax: (+40) 264-590818; Tel: (+40) 264-593833; E-mail: cristi@chem.ubbcluj.ro
${ }^{\mathrm{b}}$ Institut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334, Bremen, Germany. Fax: (+49) 421-218-62809; Tel: (+49) 421-218-63150; E-mail:
hbreunig@uni-bremen.de

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathbf{P h S b C l}(1)$

Coalescence of the NMe_{2} resonances in $\mathrm{C}_{6} \mathrm{D}_{\mathbf{6}}$

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.33\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{~A})\right], 1.62\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{~B})\right]$, AB spin system with A at 2.76 and B at $2.96 \mathrm{ppm}\left(2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}} 14.2 \mathrm{~Hz}\right), 6.82(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-3$, $\left.\mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}} 7.4 \mathrm{~Hz}\right), 7.02\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\right.$ meta + para, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, partially overlapped by residual solvent resonance), $7.30\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-5, \mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}} 7.4 \mathrm{~Hz}\right), 7.51(2 \mathrm{H}$, m, H-ortho, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}} 7.5,{ }^{4} J_{\mathrm{HH}} 1.1 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 65^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.58$ [6 H , s,br, $\left.\mathrm{N}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right]$, AB spin system with A at 2.92 and B at $3.06 \mathrm{ppm}\left(2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}} 14.1 \mathrm{~Hz}\right), 6.84\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-3, \mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}} 7.4 \mathrm{~Hz}\right), 7.04(3 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-$ meta + para, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, partially overlapped by residual solvent resonance), $7.30\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-5, \mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}} 7.4 \mathrm{~Hz}\right), 7.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$-ortho, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.88(1 \mathrm{H}, \mathrm{d}$, $\mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}} 7.4 \mathrm{~Hz}$).

Coalescence of both NMe_{2} resonances and methylene AB system, respectively, in DMSOd_{6}
${ }^{1} \mathrm{H}$ NMR (200 MHz, $20^{\circ} \mathrm{C}$, DMSO-d d_{6}): $\delta 2.01\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{~A})\right], 2.41\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$ (B)], AB spin system with A at 3.48 (partially overlapped by water resonance) and B at 3.83 ppm ($\left.2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}} 14.6 \mathrm{~Hz}\right), 7.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, and H-meta + para, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.47(4 \mathrm{H}$, m, $\mathrm{H}-4,5, \mathrm{C}_{6} \mathrm{H}_{4}$, and H-ortho, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 50^{\circ} \mathrm{C}$, DMSO- d_{6}): $\delta 2.22\left[6 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$, AB spin system with A at 3.51 and B at $3.83 \mathrm{ppm}\left(2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}} 14.2 \mathrm{~Hz}\right), 7.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, and H-meta+para, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.47\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,5, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, and H -ortho, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, 78{ }^{\circ} \mathrm{C}\right.$, DMSO-d $\left.{ }_{6}\right): \delta 2.23\left[6 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{CH}_{2}\right), 7.34$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{C}_{6} \mathrm{H}_{4}$, and H-meta+para, $\mathrm{C}_{6} \mathrm{H}_{5}$), $7.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,5, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, and $\mathrm{H}-$ ortho, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $8.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

[2-($\left.\left.\mathbf{M e}_{2} \mathbf{N C H}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right] \mathbf{P h S b B r}$ (2)

- the crystal contains a $1: 1$ mixture of $\left(R_{\mathrm{N}}, A_{\mathrm{Sb}}\right)$ and $\left(S_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ isomers

Figure S1. Molecular structure of $\left(R_{\mathrm{N}}, A_{\mathrm{sb}}\right) \mathbf{- 2}$ isomer (left) and ($S_{\mathrm{N}}, C_{\mathrm{Sb}}$)-2 isomer (right) in the crystal of 2, showing the intramolecular bromine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance $\quad \operatorname{Br}(1) \cdots \mathrm{H}(6) 2.81 \AA \quad \sum r_{\mathrm{vdW}}(\mathrm{Br}, \mathrm{H}) 3.15 \AA$

Figure S2. View of a chain polymer based on $\mathrm{Br} \cdots \mathrm{H}_{\text {aryl }}$ and $\mathrm{C}-\mathrm{H}_{\text {methylene }} \cdots \pi$ ($\mathrm{Ph}_{\text {centroid }}$) contacts between ($S_{\mathrm{N}}, C_{\mathrm{Sb}}$)-2 isomers in the crystal of $\mathbf{2}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms $(x,-1+y, z),(0.5-x,-0.5+y, 0.5-z),(0.5$ $-x, 0.5+y, 0.5-z)$ and $(0.5-x, 0.5+y, 0.5-z)$ are given by ' a ', ' b '", ' c " and ' d ", respectively].

- intermolecular distance

$$
\begin{array}{ll}
\operatorname{Br}(1) \cdots \mathrm{H}(5 \mathrm{a}) & 3.12 \AA \\
\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A}) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) & 2.95 \AA
\end{array}
$$

Figure S3. View along b axis of a chain polymer built from $\left(S_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ - $\mathbf{2}$ isomers in the crystal of 2 through $\mathrm{Br} \cdots \mathrm{H}_{\text {aryl }}$ and $\mathrm{C}-\mathrm{H}_{\text {methylene }} \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts.

Figure S4. View of a layer with inter-chain $\mathrm{Br} \cdots \mathrm{H}_{\text {aryl }}$ contacts between alternating chain polymers built from $\left(S_{\mathrm{N}}, C_{\mathrm{Sb}}\right) \mathbf{2}$ and ($R_{\mathrm{N}}, A_{\mathrm{Sb}}$)-2 isomers, respectively, in the crystal of $\mathbf{2}$.

- inter-chain distance

$$
\operatorname{Br}(1) \cdots \mathrm{H}(13) 3.14 \AA
$$

$$
\sum r_{\mathrm{vdW}}(\mathrm{Br}, \mathrm{H}) 3.15 \AA
$$

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathbf{P h S b I}(3)$

Figure S5. ORTEP representation at 30% probability and atom numbering scheme for ($S_{\mathrm{N}}, C_{\mathrm{Sb}}$)-3 isomer. Hydrogen atoms are omitted.

- the crystal contains a $1: 1$ mixture of $\left(R_{\mathrm{N}}, A_{\mathrm{Sb}}\right)$ and $\left(S_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ isomers

Figure S6. Molecular structure of $\left(R_{\mathrm{N}}, A_{\mathrm{Sb}}\right) \mathbf{- 3}$ isomer (left) and ($S_{\mathrm{N}}, C_{\mathrm{Sb}}$)-3 isomer (right) in the crystal of $\mathbf{3}$, showing the intramolecular iodine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance
$\mathrm{I}(1) \cdots \mathrm{H}(6) 3.04 \AA$
$\sum r_{\mathrm{vdW}}(\mathrm{I}, \mathrm{H}) 3.35 \AA$

Figure $\mathbf{S 7}$. View of a chain polymer based on $\mathrm{I} \cdots \mathrm{H}_{\text {methyl }}$ contacts between alternating $\left(S_{\mathrm{N}}, C_{\mathrm{sb}}\right)$ 3 and $\left(R_{\mathrm{N}}, A_{\mathrm{Sb}}\right)-\mathbf{3}$ isomers in the crystal of $\mathbf{3}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($x, 0.5-y, 0.5+z$) and ($x, 0.5-y,-0.5+z$) are given by ' a '" and 'b'", respectively].

- intermolecular distance
$\mathrm{I}(1) \cdots \mathrm{H}(9 \mathrm{~B}) 3.22 \AA$
$\sum r_{\mathrm{vdW}}(\mathrm{I}, \mathrm{H}) 3.35 \AA$

Figure S8. View along c axis of a chain polymer in the crystal of $\mathbf{3}$.

Figure S9. View along c axis of parallel chain polymers in the crystal of $\mathbf{3}$.

- no further I $\cdots \mathrm{H}$ contacts between parallel chains.

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Ph}_{2} \mathbf{S b}$ (4)

- the crystal contains a $1: 1$ mixture of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ and $\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)$ isomers

Figure S10. Molecular structure of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)-4$ isomer (left) and $\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)-4$ isomer (right) in the crystal of 4 .

Figure S11. View of a chain polymer based on $\mathrm{C}-\mathrm{H}_{\text {ary }} \cdot \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts between ($R_{\mathrm{N}}, C_{\mathrm{Sb}}$)-4 isomers in the crystal of $\mathbf{4}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms $(x, y,-1+z)$ and $(x, y, 1+z)$ are given by ' a ' and ' b '", respectively].

- intra-chain distance $\quad \mathrm{C}(17)-\mathrm{H}(17) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) \quad 2.80 \AA$

Figure S12. View of a layer of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)-4$ isomers based on $\mathrm{C}-\mathrm{H}_{\text {ary }} \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts in the crystal of $\mathbf{4}$ (only hydrogen atoms involved in intermolecular contacts are shown).

- inter-chain distance $\quad \mathrm{C}(20)-\mathrm{H}(20) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) \quad 2.93 \AA$
- no further contacts between parallel, alternative layers of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ and $\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)$ isomers, respectively.

Figure S13. View along c axis of alternative layers of ($R_{\mathrm{N}}, C_{\mathrm{Sb}}$) and ($S_{\mathrm{N}}, A_{\mathrm{Sb}}$) isomers, respectively, in the crystal of 4 .
[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{PhSb}(5)$

Figure S14. ORTEP representation at 30% probability and atom numbering scheme for ($\left.S_{\mathrm{N} 3}, S_{\mathrm{N} 4}, C_{\mathrm{Sb} 2}\right)$-5b isomer. Hydrogen atoms are omitted.

- the crystal contains a 1:1 mixture of $\left(R_{\mathrm{N} 1}, R_{\mathrm{N} 2}, A_{\mathrm{Sb} 1}\right) /\left(S_{\mathrm{N} 1}, S_{\mathrm{N} 2}, C_{\mathrm{Sb} 1}\right)-5 \mathbf{a n d}\left(R_{\mathrm{N} 3}, R_{\mathrm{N} 4}, A_{\mathrm{Sb} 2}\right) /$ $\left(S_{\mathrm{N} 3}, S_{\mathrm{N} 4}, C_{\mathrm{Sb} 2}\right)-\mathbf{5 b}$ isomers

(a)

(b)

Figure S15. Molecular structure of (a) ($\left.R_{\mathrm{N} 1}, R_{\mathrm{N} 2}, A_{\mathrm{Sb} 1}\right)-5 \mathbf{a}$ (left) and ($\left.S_{\mathrm{N} 1}, S_{\mathrm{N} 2}, C_{\mathrm{Sb} 1}\right)$-5a (right) isomers, and (b) ($\left.R_{\mathrm{N} 3}, R_{\mathrm{N} 4}, A_{\mathrm{Sb} 2}\right)-\mathbf{5 b}$ isomer (left) and ($\left.S_{\mathrm{N} 3}, S_{\mathrm{N} 4}, C_{\mathrm{Sb} 2}\right)-\mathbf{5 b}$ isomer (right), in the crystal of 5 .

Figure S16. View along axis a of a chain polymer based on $\mathrm{C}-\mathrm{H}_{\text {methy }} \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts between alternating ($R_{\mathrm{N} 1}, R_{\mathrm{N} 2}, A_{\mathrm{Sb} 1}$)-5a and ($S_{\mathrm{N} 3}, S_{\mathrm{N} 4}, C_{\mathrm{Sb} 2}$)-5b isomers in the crystal of $\mathbf{5}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms $(x, y, 1+z)$ and $(x, y,-1+z)$ are given by ' a ' and ' b ', respectively].

- intra chain distance $\quad \mathrm{C}(17)-\mathrm{H}(17) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) \quad 3.06 \AA$
- no further contacts between parallel chains.

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]$ PhMesSb (6)

- the crystal contains a $1: 1$ mixture of $\left(R_{\mathrm{N}}, A_{\mathrm{Sb}}\right)$ and $\left(S_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ isomers

Figure S17. Molecular structure of $\left(R_{\mathrm{N}}, A_{\mathrm{Sb}}\right)-\mathbf{6}$ isomer (left) and $\left(S_{\mathrm{N}}, C_{\mathrm{Sb}}\right)-4$ isomer (right) in the crystal of 6 .

Figure S18. View of a chain polymer based on $\mathrm{C}-\mathrm{H}_{\text {ary }} \cdots \pi$ and $\mathrm{C}-\mathrm{H}_{\text {methy }} \cdot \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts between ($R_{\mathrm{N}}, A_{\mathrm{Sb}}$)-6 isomers in the crystal of $\mathbf{6}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms $(-1+x, y, z)$ and $(1+x, y, z)$ are given by ' a '" and ' b ', respectively].

- intra chain distance

$$
\begin{array}{ll}
\mathrm{C}(21)-\mathrm{H}(21) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) & 2.90 \AA \\
\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A}) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) & 2.94 \AA
\end{array}
$$

Figure S19. View of a layer of $\left(R_{\mathrm{N}}, A_{\mathrm{sb}}\right)-\mathbf{6}$ isomers based on $\mathrm{C}-\mathrm{H}_{\text {methy }} \cdots \cdot \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts in the crystal of 6 (only hydrogen atoms involved in intermolecular contacts are shown).

- inter-chain distance $\quad \mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B}) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) \quad 2.97 \AA$

Figure S20. View of a double-layer association between layers of ($R_{\mathrm{N}}, A_{\mathrm{Sb}}$) and ($S_{\mathrm{N}}, C_{\mathrm{Sb}}$) isomers, respectively, in the crystal of $\mathbf{6}$.

- inter-layer distance

$$
\mathrm{C}(23)-\mathrm{H}(23) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)
$$

$2.98 \AA$

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right] \mathbf{M e s S b B r}$ (7)

- the crystal contains a $1: 1$ mixture of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ and $\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)$ isomers

Figure S21. Molecular structure of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)-7$ isomer (left) and ($S_{\mathrm{N}}, A_{\mathrm{Sb}}$)-7 isomer (right) in the crystal of 7, showing the intramolecular bromine-hydrogen contact (only hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance
$\operatorname{Br}(1) \cdots \mathrm{H}(6) 2.86 \AA$
$\sum r_{\mathrm{vdW}}(\mathrm{Br}, \mathrm{H}) 3.15 \AA$

Figure S22. View of a dimer based on $\mathrm{Br} \cdots \mathrm{H}_{\text {aryl }}$ contacts between ($R_{\mathrm{N}}, C_{\mathrm{Sb}}$) and ($S_{\mathrm{N}}, A_{\mathrm{Sb}}$)-7 isomers in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($1-x, 1-y,-z$) are given by 'prime''].

- intermolecular distance

$$
\mathrm{Br}(1) \cdots \mathrm{H}(12 \mathrm{a}) 3.07 \AA
$$

Figure S23. View of a columnar polymer of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right) /\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)-7$ dimer units based on $\mathrm{Br} \cdots \mathrm{H}_{\text {methyl }}$ contacts in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($1-x, 1-y,-z$), $(x, 1-y, z),(1-x,-y,-z)$,
 respectively].

- inter-dimer distance

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right] \mathbf{M e s S b B r}$ (7)

$\begin{array}{lllllllllllllllllllllllllllllllllll}9.0 & 8.9 & 8.8 & 8.7 & 8.6 & 8.5 & 8.4 & 8.3 & 8.2 & 8.1 & 8.0 & 7.9 & 7.8 & 7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2 & 7.1 & 7.0 & 6.9 & 6.8 & 6.7 & 6.6 & 6.5 & 6.4 & 6.3 & 6.2 & 6.1\end{array}$

Figure S23a. ${ }^{1} \mathrm{H}$ NMR spectra of 7: (up) aliphatic region, and (down) aromatic region [violet in CDCl_{3}, at r.t.; black - in DMSO-d d_{6}, at $20^{\circ} \mathrm{C}$; green - in DMSO- d_{6}, at $\left.45^{\circ} \mathrm{C}\right]$.

Coalescence of resonances for the aromatic protons of mesityl group in DMSO-d \mathbf{d}_{6}

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 20^{\circ} \mathrm{C}$, DMSO-d ${ }_{6}$): $\delta 1.80\left(3 \mathrm{H}\right.$, s, ortho $\left.-\mathrm{CH}_{3}\right), 2.12\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{~A})\right]$, $2.20\left(3 \mathrm{H}, \mathrm{s}\right.$, para $\left.-\mathrm{CH}_{3}\right), 2.36\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{~B})\right], 2.70\left(3 \mathrm{H}, \mathrm{s}\right.$, ortho $\left.-\mathrm{CH}_{3}\right)$, AB spin system with A at 3.633 and B at $3.728 \mathrm{ppm}\left(2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}} 14.40 \mathrm{~Hz}\right), 6.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{H}-3^{\prime}, 5^{\prime}, \mathrm{C}_{6} \mathrm{H}_{2}\right)$, 6.93 ($1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{H}-3$ ', $5^{\prime}, \mathrm{C}_{6} \mathrm{H}_{2}$), $7.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.41\left(2 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}-4,5, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.40$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 45^{\circ} \mathrm{C}$, DMSO-d ${ }_{6}$): $\delta 1.87\left(3 \mathrm{H}\right.$, s,br, ortho $\left.-\mathrm{CH}_{3}\right), 2.12\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$ (A)], $2.21\left(3 \mathrm{H}, \mathrm{s}\right.$, para $\left.-\mathrm{CH}_{3}\right), 2.38\left[3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{~B})\right], 2.68\left(3 \mathrm{H}, \mathrm{s}\right.$, br, ortho $\left.-\mathrm{CH}_{3}\right)$, AB spin system with A at 3.651 and B at $3.734 \mathrm{ppm}\left(2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}} 14.20 \mathrm{~Hz}\right), 6.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{2}\right), 7.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.41\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{H}-4,5, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

[2-(Me $\left.\left.\mathbf{N C H}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right]$ MesSbI (8)

- the crystal contains a $1: 1$ mixture of $\left(R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$ and $\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)$ isomers

Figure S24. Molecular structure of ($\left.R_{\mathrm{N}}, C_{\mathrm{Sb}}\right)$-8 isomer (left) and ($S_{\mathrm{N}}, A_{\mathrm{sb}}$)-8 isomer (right) in the crystal of 8, showing the intramolecular iodine-hydrogen and $\mathrm{C}-\mathrm{H}_{\text {methyl }} \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts (only hydrogen atoms involved in intramolecular interactions are shown).

$$
\begin{array}{llll}
-\quad \text { intramolecular distance } & \mathrm{I}(1) \cdots \mathrm{H}(6) & 3.06 \AA & 3.23 \AA \\
& \mathrm{I}(1) \cdots \mathrm{H}(16 \mathrm{~B}) & \sum r_{\mathrm{vdW}}(\mathrm{I}, \mathrm{H}) 3.35 \AA \\
& \mathrm{C}(16)-\mathrm{H}(16 \mathrm{C}) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) & 3.02 \AA &
\end{array}
$$

Figure S25. View of a chain polymer association based on I $\cdots \mathrm{H}_{\text {methyl }}$ contacts between $\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)-\mathbf{8}$ isomers in the crystal of $\mathbf{8}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($-1+x, y, z$) and ($1+x, y, z$) are given by ' a ' and "b", respectively].

- intermolecular distance

Figure S26. View along axis c of a layer of $\left(S_{\mathrm{N}}, A_{\mathrm{Sb}}\right)-\mathbf{8}$ isomers based on $\mathrm{I} \cdots \mathrm{H}_{\text {methyl }}, \mathrm{I} \cdots \mathrm{H}_{\text {aryl }}$ and $\mathrm{C}-\mathrm{H}_{\text {ary }} \cdot \cdots \pi$ ($\mathrm{Ph}_{\text {centroid }}$) contacts in the crystal of $\mathbf{8}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($2-x, 0.5+y, 0.5-z$) and (2 $-x,-0.5+y, 0.5-z$) are given by "prime" and 'double prime", respectively].

- intermolecular distance

$$
\begin{array}{ll}
\mathrm{I}(1) \cdots \mathrm{H}\left(14^{\prime}\right) & 3.31 \AA \\
\mathrm{I}(1) \cdots \mathrm{H}\left(4^{\prime \prime}\right) & 3.34 \AA \\
\mathrm{C}(5)-\mathrm{H}(5) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right) & 3.00 \AA
\end{array}
$$

Figure S27. View along axis a of the 3D structure built from alternating layers of ($R_{\mathrm{N}}, C_{\mathrm{Sb}}$)-8 and $\left(S_{\mathrm{N}}, A_{\mathrm{sb}}\right)-\mathbf{8}$ isomers based on $\mathrm{C}-\mathrm{H}_{\text {methyl }}{ }^{\cdots} \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$ contacts in the crystal of $\mathbf{8}$ (only hydrogen atoms involved in intermolecular contacts are shown).

- intermolecular distance
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A}) \cdots \pi\left(\mathrm{Ph}_{\text {centroid }}\right)$
$2.99 \AA$

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Mes}_{2} \mathbf{S b}$ (9)

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.79\left[6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $2.13\left(6 \mathrm{H}\right.$, s, para $\left.-\mathrm{CH}_{3}\right)$, $2.40(12$ H , s, ortho $\left.-\mathrm{CH}_{3}\right), 3.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.77\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}, 5^{\prime}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 6.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $7.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3,4, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6, \mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}} 7.2 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, 20{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: 20.98 (s, para- CH_{3}), 26.16 (s , ortho $-\mathrm{CH}_{3}$), 44.31 [s , $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 66.21\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 128.17$ ($\mathrm{s}, \mathrm{C}-5$), 128.31 ($\mathrm{s}, \mathrm{C}-4$), 128.84 (s, C-3), 129.19 (s, C-3',5'), 137.46 ($\mathrm{s}, \mathrm{C}-1$ '), 138.20 ($\mathrm{s}, \mathrm{C}-6$), 139.43 ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 140.13 ($\mathrm{s}, \mathrm{C}-1$), 144.99 ($\mathrm{s}, \mathrm{C}-2^{\prime}, 6^{\prime}$), 145.26 ($\mathrm{C}-2$).

