
Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Tom J. Cunningham, Mark R. J. Elsegood, Paul F. Kelly, Martin B. Smith* and Paul M. Staniland

Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UK, LE11 3TU

^{*} To whom correspondence should be addressed. E-mail: m.b.smith@lboro.ac.uk. Tel: +44 (0)1509 222553. Fax: +44 (0)1509 223925.

Experimental Section

Materials. Reactions were carried out under aerobic conditions unless otherwise stated. Dichloromethane was previously distilled over CaH_2 and diethyl ether over sodium/benzophenone. All chemicals were obtained from commercial suppliers and used without further purification. AdPH was a kind donation from Cytec Canada Inc. The bromophosphine 2-Ph₂PC₆H₄Br **1a** was prepared according to a previously reported procedure.¹ The metal precursors $PdCl_2(PhCN)_2$ and $MCl_2(cod)$ (M = Pd, Pt) were synthesised according to known procedures.^{2,3}

Instrumentation. FT–IR spectra were recorded as pressed KBr pellets over the range 4000–400 cm⁻¹ using a Perkin-Elmer system 2000 FT spectrometer. ¹H NMR and ³¹P{¹H} NMR spectra were recorded on a Bruker DPX-400 FT spectrometer with chemical shifts (δ) reported relative to external TMS or 85% H₃PO₄. Coupling constants (*J*) in Hz. All NMR spectra were recorded in CDCl₃ solutions at *ca.* 298 K. Elemental analyses (Perkin-Elmer 2400 CHN or Exeter Analytical, Inc. CE-440 Elemental Analyzers) were performed by the Loughborough University Analytical Service within the Department of Chemistry. Compound **1b** was analysed (JEOL SX102 instrument) by fast atom bombardment (FAB) in a positive ionization mode using a 3-nitrobenzyl alcohol (NOBA) matrix. Compounds **2a**, **3a** and **3b** were analysed (Finnigan MAT 95XP instrument) by low-resolution EI (positive ionisation mode) using CH₂Cl₂/CH₃OH as the solvent.

Preparation of 2-AdPC₆H₄Br, 1b. To a DMA solution (70 cm³) of Pd(OAc)₂ (10.6 cm³ of a 5 x 10^{-3} mol solution, 0.05 mmol) and K(OAc) (2.07 g, 29.2 mmol) was added 1,2-bromo(iodo)benzene (7.5 g, 26.5 mmol) and thoroughly purged with N₂. AdPH (4.9 g, 26.5 mmol) in DMA (30 cm³) was added dropwise over 20 min and the mixture heated to reflux for 2 d under N₂. The solution was cooled, distilled water (50 cm³) added and the product extracted into CH₂Cl₂ (2 x 50 cm³). The organic extracts were combined, washed with saturated KCl solution (50 cm³) and dried over anhydrous MgSO₄. The solution was concentrated under reduced pressure to *ca*. 20 cm³ and stored at 0 °C. Solid **1b** was filtered off, washed with cold absolute ethanol (2 x 10 cm³) and dried *in vacuo*. Yield: 5.3 g, 55%. Selected spectroscopic data for **1b**: δ_P (162 MHz: CDCl₃) –29.6 ppm. δ_H (400 MHz: CDCl₃): 8.19 (dt, 1H, arom. H), 7.55 (ddd, 1H, arom. H), 7.26 (dt, 1H, arom. H), 7.15 (dt, 1H, arom. H), 2.07–1.33 (m, 16H, PAd) ppm. FAB–MS 371 [M⁺]. Found: C, 49.34; H, 5.29; C₁₆H₂₀O₃BrP·H₂O requires C, 49.37; H, 5.71.

Preparation of 2-Ph₂PC₆H₄SePh, 2a. Freshly ground KOH (0.284 g, 5.05 mmol) was dissolved in DMA (50 cm³), PhSeH (0.579 g, 2.53 mmol) added and the orange solution purged with N₂. Compound **1a** (0.784 g, 2.30 mmol), dissolved in DMA (30 cm³), was added to the stirred PhSeH solution over 5 min. After heating at 170 °C for 3d, the solution was cooled and distilled water (80 cm³) added. After extraction with CH₂Cl₂ (2 x 50 cm³), the organic extracts were combined, washed with water (50 cm³), the organic layer separated and dried over anhydrous MgSO₄. The volume was reduced to *ca.* 5–10 cm³, distilled water added to afford a white suspension that was stirred overnight. Decantation of the solvent followed by addition of cold absolute EtOH (40 cm³) gave an off-white solid **2a** which was collected by filtration and dried *in vacuo*. Yield: 0.504 g, 53%. Selected spectroscopic data for **2a**: δ_P (162 MHz: CDCl₃) –10.0 ppm, $^3J_{PSe}$ 139 Hz. δ_H (400 MHz: CDCl₃): 7.46–7.12 (m, 19H, arom. H) ppm. FAB–MS 418 [M⁺]. Found: C, 68.06; H, 4.58; C₂₄H₁₉PSe·0.25H₂O requires C, 68.33; H, 4.67.

Preparation of 2-AdPC₆H₄SePh, 2b. Compound **1b** (0.373 g, 1.005 mmol), dissolved in DMA (30 cm³), was added dropwise to a solution of PhSeH (0.158 g, 1.005 mmol) and KOH (0.085 g, 1.110 mmol) in DMA (30 cm³). The mixture was stirred at 160 °C for 7 d under N₂, cooled and water (60 cm³) added to afford a light brown suspension. CH₂Cl₂ (2 x 60 cm³) was added and the combined extracts washed with water (60 cm³), separated and the organic layer dried over anhydrous MgSO₄.

Reduction of the solvent to ca. 15 cm³, precipitation with water (30 cm³) gave a cloudy suspension that was stirred for 12 h affording a brown solid. The solvent was decanted, cold absolute ethanol (20 cm³) added and **2b** filtered and dried *in vacuo*. Yield: 0.178 g (40%). Selected spectroscopic data for **2b**: δ_P (162 MHz: CDCl₃) –34.6 ppm, $^3J_{PSe}$ 201 Hz. δ_H (400 MHz: CDCl₃): 8.10 (dt, 1H, arom. H), 7.51–7.27 (m, 5H, arom. H), 7.09 (dt, 1H, arom. H), 7.05 (dt, 1H, arom. H), 6.97 (ddd, 1H, arom. H), 2.10–1.35 (m, 16H, PAd) ppm. Found: C 58.52, H 5.65; $C_{22}H_{25}PO_3Se$ requires C 59.07, H 5.63. Suitable crystals for X-ray crystallography were obtained by vapour diffusion of diethyl ether into a CDCl₃ solution of **2b**.

Preparation of PtCl₂(2-Ph₂PC₆H₄SePh) 3a. To a CH₂Cl₂ (10 cm³) of PtCl₂(cod) (0.074 g, 0.20 mmol) was added solid **2a** (0.093 g, 0.22 mmol) in one portion. The yellow solution was stirred for 35 min and the volume concentrated, under reduced pressure, to *ca.* 2–3 cm³. Addition of diethyl ether (20 cm³) afforded **3a** which was collected by suction filtration and dried *in vacuo*. Yield: 0.130 g, 96%. Selected spectroscopic data for **3a**: δ_P (162 MHz: CDCl₃) 36.6 ppm, $^1J_{PtP}$ 3555 Hz, $^2J_{PSe}$ 68 Hz. δ_H (400 MHz: CDCl₃): 7.85–7.15 (m, 19H, arom. H) ppm. EI–MS 684 [M⁺]. Found: C, 42.42; H, 2.97; C₂₄H₁₉Cl₂PPtSe requires C, 42.18; H, 2.81. Suitable crystals for X-ray crystallography were obtained by vapour diffusion of diethyl ether into a CDCl₃/(CH₃)₂SO solution of **3a**.

Preparation of PdCl₂(2-AdPC₆H₄SePh) 3b. To a CH₂Cl₂ (7 cm³) of PdCl₂(PhCN)₂ (0.031 g, 0.082 mmol) was dropwise added a CH₂Cl₂ (7 cm³) solution of **2b** (0.037 g, 0.082 mmol) over 10 min. The yellow solution was stirred for *ca.* 3.5 h, the volume concentrated under reduced pressure to *ca.* 2–3 cm³ and Et₂O (20 cm³)/petroleum ether (60–80°C, 50 cm³) added. The solid **3b** was collected by suction filtration and dried *in vacuo*. Yield: 0.031 g, 61%. Selected spectroscopic data for **3b**: δ_P (162 MHz: CDCl₃) 46.6, 45.9 ppm. δ_H (400 MHz: CDCl₃): 8.48 (t, 1H, arom. H), 8.42 (m, 1H, arom. H), 7.88 (d, 1H, arom. H), 7.73–7.25 (m, 15H, arom. H), 4.13 (m, 2H, CH₂), 2.16–0.92 (m, 30H, PAd) ppm. EI–MS 590 [M–Cl⁺] Found: C, 41.76; H, 3.81; C₂₂H₂₅Cl₂PO₃PdSe requires C, 41.38; H, 3.97. Suitable crystals for X-ray crystallography were obtained by vapour diffusion of diethyl ether into a CH₂Cl₂ solution of **3b**.

Preparation of Ph₂P(CH₂)₂SePh, 4. Vinyldiphenylphosphine (0.30 g, 1.41 mmol) was placed in a Schlenk tube and heated to 110 °C. Selenophenol (0.22 g, 1.40 mmol) was added and the reaction mixture stirred for 5 min. After addition of AIBN (0.05 g), the mixture was stirred at 110 °C for 14 h. Whilst at 80 °C the contents of the Schlenk tube were placed under vacuum for 6 h to remove any volatile side products. Solid **4** was collected, after cooling, and used directly in co-ordination studies. Selected spectroscopic data for **4**: δ_P (162 MHz: CDCl₃) –15.4 ppm. δ_H (400 MHz: CDCl₃): 7.68–7.15 (m, 15H, arom. H), 2.99 (m, 2H, CH₂), 2.56 (m, 2H, CH₂) ppm. Found: C, 64.40; H, 5.16; $C_{20}H_{19}PSe$ requires C, 65.05; H, 5.20.

Preparation of PdCl₂{Ph₂P(CH₂)₂SePh}, 5. To a CH₂Cl₂ (10 cm³) of PdCl₂(cod) (0.077 g, 0.27 mmol) was dropwise added a CH₂Cl₂ (5 cm³) of **4** (0.10 g, 0.27 mmol) over 10 min. The solution was stirred for *ca*. 2 h, the volume concentrated under reduced pressure to *ca*. 2–3 cm³ and Et₂O (60 cm³) added. The solid **5** was collected by suction filtration and dried *in vacuo*. Yield: 0.081 g, 55%. Selected spectroscopic data for **5**: δ_P (162 MHz: CDCl₃) 62.3 ppm. δ_H (400 MHz: CDCl₃): 8.00–7.35 (m, 15H, arom. H), 3.24 (m, 1H, CH₂), 2.84 (m, 3H, CH₂) ppm. Found: C, 43.62; H, 3.16; C₂₀H₁₉Cl₂PPdSe requires C, 43.95; H, 3.50.

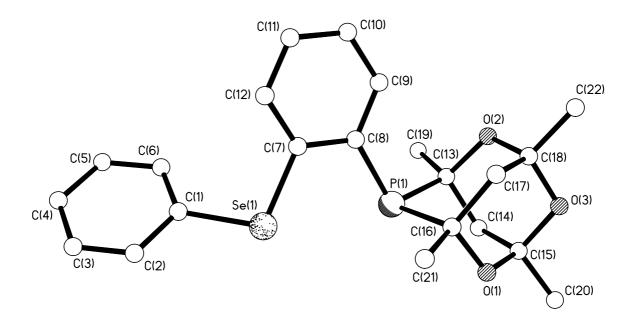
References

- 1. P. Machnitzki, T. Nickel, O. Stelzer and C. Landgrafe, Eur. J. Inorg. Chem., 1998, 1029.
- 2. D. Drew and J. R. Doyle, *Inorg. Synth.*, 1972, **13**, 47
- 3. J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc., 1976, 98, 6521.

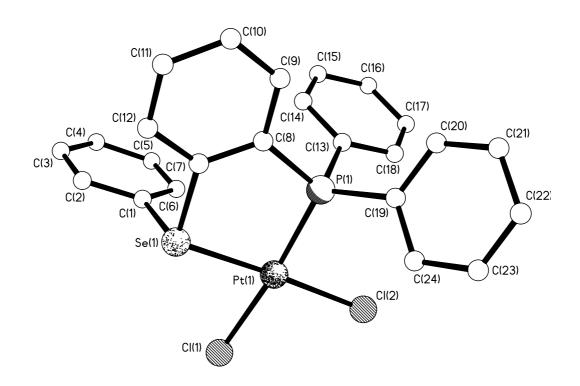
Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Additional Single Crystal X-ray Figures

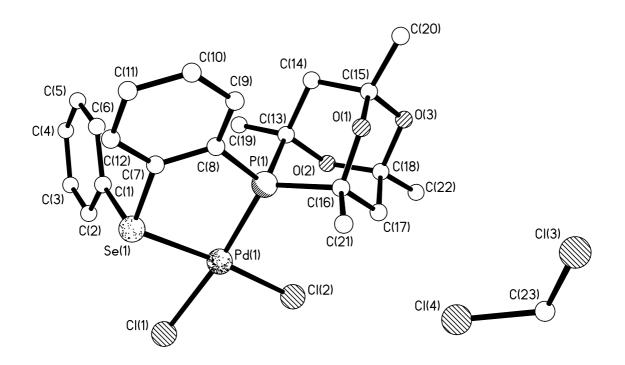
Further figures for all crystallographically characterised compounds reported are included.


ESIFIG1 for **2a** showing the full atom numbering scheme.

ESIFIG2 for **3a** showing the full atom numbering scheme.


ESIFIG2 for **3b** showing the full atom numbering scheme.

Additional Single Crystal X-ray Figures (for 2a, 3a and 3b)


ESIFIG1 for **2a** showing the full atom numbering scheme.

ESIFIG2 for **3a** showing the full atom numbering scheme.

ESIFIG3 for **3b** showing the full atom numbering scheme.

