A two-and-a-half-layer sandwich: potassium salt of anionic (**η**⁴-tetrasilacyclobutadiene)(**η**⁵-cyclopenta-

dienyl)ruthenium

Vladimir Ya. Lee, Kazunori Takanashi and Akira Sekiguchi*

SUPPORTING INFORMATION

Dr. V. Ya. Lee, Dr. K. Takanashi, Prof. A. Sekiguchi Department of Chemistry Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba, Ibaraki 305-8571, Japan E-mail: sekiguch@chem.tsukuba.ac.jp

General Procedures.

All experiments were performed using high-vacuum line techniques or in an argon atmosphere using MBRAUN MB 150B-G glove box. All solvents were dried and degassed over potassium mirror in vacuum prior to use. NMR spectra were recorded on Bruker AC-300FT NMR (¹H NMR at 300.1 MHz; ¹³C NMR at 75.5 MHz; ²⁹Si NMR at 59.6 MHz) and AV-400FT NMR (¹H NMR at 400 MHz; ¹³C NMR at 100.6 MHz; ²⁹Si NMR at 79.5 MHz) spectrometers. The dipotassium salt of the tetrasilacyclobutadiene dianion $2^{2-} \cdot [K^+(thf)_2]_2$ and ruthenium complex [Cp*RuCl]₄ were prepared according to the published procedures [1] and [2], respectively.

ExperimentalProcedureandSpectralDatafor ${[\eta^4-({}^tBu_2MeSi)_4Si_4]RuCp^*}^{-\bullet}[K^+(thf)_2](1^{-\bullet}[K^+(thf)_2]).$

The dipotassium salt of the tetrasilacyclobutadiene dianion $2^{2-\bullet}[\mathbf{K}^+(\mathbf{thf})_2]_2$ (125 mg, 0.113 mmol) and [Cp*RuCl]₄ (31 mg, 0.029 mmol) were placed in a reaction tube with a magnetic stirring bar. Dry oxygen-free THF (2 ml) was introduced into this tube by vacuum transfer, and the reaction mixture was stirred at room temperature to give a red solution within 1 h. After evaporation of the solvent and removal of the inorganic salt, the reaction mixture was recrystallized from hexane–THF to give $1^{-\bullet}[\mathbf{K}^+(\mathbf{thf})_2]$ (85 mg, 65%) as as air- and moisture-sensitive red crystals. Mp > 300 °C (dec.); ¹H NMR (THF-d₈, δ) 0.04 (s, 12 H, CH₃), 1.14 (s, 72 H, C(CH₃)₃), 2.28 (s, 15 H, (CH₃)₅C₅); ¹³C NMR (THF-d₈, δ) –2.7 (CH₃), 16.1 ((*CH*₃)₅C₅), 22.0 (*C*(CH₃)₃), 32.0 (C(*CH*₃)₃), 88.6 ((CH₃)₅C₅); ²⁹Si NMR (THF-d₈, δ) –49.8 (skeletal Si), 20.4 (substituent Si).

X-ray Diffraction Study and Crystallographic Data for 1⁻•[K⁺(thf)₂]).

The single crystals of $1^{-\bullet}[\mathbf{K}^+(\mathbf{thf})_2]$ for X-ray diffraction analysis were grown from a hexane-THF solution at -30 °C. Diffraction data were collected at 150 K on a MacScience DIP2030 Image Plate diffractometer equipped with a rotating anode (50 kV, 90 mA) employing graphite-monochromatized Mo- $K\alpha$ radiation ($\lambda = 0.71070$ Å). The structure was solved by the direct method using SIR-92 [3] program and refined by the full-matrix least-squares method by SHELXL-97 program [4]. Crystallographic data for $1^{-\bullet}[\mathbf{K}^+(\mathbf{thf})_2]$ at 150 K: MF = $C_{54}H_{115}K_1O_2Ru_1Si_8$, MW = 1161.35, orthorhombic, *Pccn*,

 $a = 20.5640(5), b = 44.9360(4), c = 14.2880(13) \text{ Å}, V = 13203.0(12) \text{ Å}^3, Z = 8, D_{calcd} = 1.169 \text{ g} \cdot \text{cm}^{-3}$. The final *R* factor was 0.0639 for 9512 reflections with $I_0 > 2\sigma(I_0)$ ($R_w = 0.1697$ for all data, 14892 reflections) with $I > 2\sigma(I)$, GOF = 1.019. CCDC-764194 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References:

- V. Ya. Lee, K. Takanashi, T. Matsuno, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc., 2004, 126, 4758.
- [2] P. J. Fagan, M. D. Ward, J. V. Caspar, J. C. Calabrese, P. J. Krusic, J. Am. Chem. Soc., 1988, 110, 2981.
- [3] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
- [4] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.