Supporting information

Tao Wang¹, and Junliang Zhang^{*1,2}

¹Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062 and ²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032,

China

Fax:(+86)-021-6223-5039; e-mail : jlzhang@chem.ecnu.edu.cn

General Information

All reactions were carried out without special operation and commercial available reagents were used directly. ¹H and ¹³C NMR spectra were measured at 300 and 75 MHz in CDCl₃. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened).

General procedure for synthesis of substrates

Typical procedure for synthesis of substrates 1: To a solution of the aldehyde¹ (12 mmol) in 40 mL of toluene, AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and 2,4-dione (10 mmol) were added, and the resulting mixture was stirred at 30 °C until the reaction was completed (monitored by TLC). Then the reaction mixture was added water (30 mL), and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under vaccuo. The crude residue was purified by flash chromatography on silica gel (hexanes : EtOAc = 10 : 1) to give the desired products.

1. 3-(3-phenylprop-2-ynylidene)pentane-2,4-dione (1a).

The reaction of 3-phenylpropiolaldehyde (1.56 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and pentane-2,4-dione (1.00 g, 10 mmol) in toluene (40 mL) at 30 °C for 6 h to afford 1.72 g of **1a** (81% yield) as a yellow solid (Rf: 0.43, hexane / EtOAc = 5:1). m.p. 58 – 60 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.47 (d, 2 H, *J* = 7.8 Hz); 7.44 - 7.35 (m, 3 H); 6.94 (s, 1 H); 2.57 (s, 3 H); 2.37 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 200.84, 195.54, 149.38, 132.09, 130.13, 128.61, 122.25, 121.59, 107.03, 85.26, 31.02, 27.42 ppm, MS (EI, 70 ev) m/z (%): 212 (M⁺, 89.79), 155 (100). Anal calcd for C₁₄H₁₂O₂: C, 79.22; H, 5.70; found: C, 79.06; H, 5.70.

2. 3-(3-(4-methoxyphenyl)prop-2-ynylidene)pentane-2,4-dione (1b).

The reaction of 3-(4-methoxyphenyl)propiolaldehyde (1.92 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and pentane-2,4-dione (1.00 g, 10 mmol) in toluene (40 mL) at 30 °C for 6 h to afford 1.32 g of **1b** (51% yield) as a yellow solid (Rf: 0.30, hexane / EtOAc = 5:1). m.p. 59 – 61 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.42 (d, 2 H, *J* = 8.4 Hz); 6.96 (s, 1 H); 6.88 (d, 2 H, *J* = 8.4 Hz); 3.83 (s, 3 H); 2.36 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 201.21, 195.67, 161.20, 148.21, 133.98, 123.10, 114.33, 113.61, 85.09, 55.40, 31.07, 27.48 ppm, MS (EI, 70 ev) m/z (%): 242 (M⁺, 100). HRMS calcd for C₁₅H₁₄O₃: 242.0943, found: 242.0942.

3. 3-(3-p-tolylprop-2-ynylidene)pentane-2,4-dione (1c).

The reaction of 3-P-tolylpropiolaldehyde (1.73 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and pentane-2,4-dione (1.00 g, 10 mmol) in toluene (40 mL) at 30 °C for 6 h to afford 1.28 g of **1c** (53% yield) as a yellow solid (Rf: 0.47, hexane / EtOAc = 5:1). m.p. 62 – 64 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.37 (d, 2 H, *J* = 7.5 Hz); 7.17 (d, 2 H, *J* = 7.5 Hz); 6.95 (s, 1 H); 2.56 (s, 3 H); 2.38 (s, 3 H); 2.36 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 200.94, 195.62, 148.83, 140.79, 132.07, 129.39, 122.69, 118.51, 107.82, 85.07, 31.05, 27.45, 21.67 ppm, MS (EI, 70 ev) m/z (%): 226 (M⁺, 100). Anal calcd for C₁₅H₁₄O₂: C, 79.62; H, 6.24; found: C, 79.39; H, 6.25.

4. 3-(3-(4-nitrophenyl)prop-2-ynylidene)pentane-2,4-dione (1d).

The reaction of 3-(4-nitrophenyl)propiolaldehyde (2.10 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and pentane-2,4-dione (1.00 g, 10 mmol) in toluene (40 mL) at 30 °C for 8 h to afford 300 mg of **1d** (11% yield) as a yellow solid (Rf: 0.20, hexane / EtOAc = 5:1). m.p. 87 – 89 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.23 (d, 2 H, *J* = 8.1 Hz); 7.63 (d, 2 H, *J* = 8.1 Hz); 6.88 (s, 1 H); 2.54 (s, 3 H); 2.39 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 200.41, 195.25, 151.05, 148.00, 132.82, 128.09, 123.79, 120.49, 102.89, 88.84, 30.97, 27.29 ppm, MS (EI, 70 ev) m/z (%): 257 (M⁺, 100). HRMS calcd for C₁₄H₁₁NO₄: 257.0688, found: 257.0688.

5. 3-(3-(naphthalen-1-yl)prop-2-ynylidene)pentane-2,4-dione (1e).

The reaction of 3-(naphthalen-1-yl)propiolaldehyde (2.16 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and pentane-2,4-dione (1.00 g, 10 mmol) in toluene (40 mL) at 30 °C for 10 h to afford 2.00 g of **1e** (72% yield) as a yellow solid (Rf: 0.37, hexane / EtOAc = 5:1). m.p. 63 – 65 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.25 (d, 1 H, *J* = 8.4 Hz); 7.92 - 7.85 (m, 2 H); 7.72 (d, 1 H, *J* = 7.2 Hz); 7.63 (t, 1 H, *J* = 7.5 Hz); 7.55 (t, 1 H, *J* = 7.5 Hz); 7.46 (t, 1 H, *J* = 7.5 Hz); 7.06 (s, 1 H); 2.60 (s, 3 H); 2.41 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 201.00, 195.62, 149.21, 133.09, 133.03, 131.95, 130.86, 128.42, 127.53, 126.80, 125.67, 125.15, 122.32, 119.17, 105.43, 89.78, 31.08, 27.18 ppm, MS (EI, 70 ev) m/z (%): 262 (M⁺, 58.39), 261 (100). HRMS calcd for C₁₈H₁₄O₂: 262.0994, found: 262.0995.

6. 3-(hept-2-ynylidene)pentane-2,4-dione (1f).

The reaction of hept-2-ynal (1.32 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and pentane-2,4-dione (1.00 g, 10 mmol) in toluene (40 mL) at 30 °C for 2 h to afford 1.29 g of **1f** (65% yield) as a yellow oil (Rf: 0.57, hexane / EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 6.65 (s, 1 H); 2.42 (s, 3 H); 2.40 (t, 2 H, J = 7.5 Hz); 2.26 (s, 3 H); 1.55 - 1.46 (m, 2 H); 1.43 - 1.31(m, 2 H); 0.87 (t, 3 H, *J* = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ = 201.15, 195.63, 149.45, 123.06, 110.26, 76.74, 30.75, 29.99, 27.03, 21.82, 19.76, 13.33 ppm, MS (EI, 70 ev) m/z (%): 192 (M⁺, 1.67), 135 (100). HRMS calcd for C₁₂H₁₆O₂: 192.1150, found: 192.1149.

7. 4-(3-phenylprop-2-ynylidene)heptane-3,5-dione (1g).

The reaction of 3-phenylpropiolaldehyde (1.56 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and heptane-3,5-dione (1.28 g, 10 mmol) in toluene (40 mL) at 30 °C for 6 h to afford 1.72 g of **1g** (67% yield) as a yellow oil (Rf: 0.60, hexane / EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.44$ (d, 2 H, J = 7.8 Hz); 7.43 - 7.32 (m, 3 H); 6.88 (s, 1 H); 2.87 (q, 2 H, J = 7.2 Hz); 2.66 (q, 2 H, J = 7.2 Hz); 1.20 (t, 3 H, J = 7.2 Hz); 1.12 (t, 3 H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 204.77$, 198.10, 149.82, 132.01, 129.92, 128.57, 121.68, 120.24, 105.43, 85.05, 36.75, 32.67, 7.89, 7.61 ppm, MS (EI, 70 ev) m/z (%): 240 (M⁺, 38.57), 155 (100). HRMS calcd for C₁₆H₁₆O₂: 240.1150, found: 240.1149. 8. 1,3-diphenyl-2-(3-phenylprop-2-ynylidene)propane-1,3-dione (**1h**).

The reaction of 3-phenylpropiolaldehyde (1.56 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and 1,3-diphenylpropane-1,3-dione (2.24 g, 10 mmol) in toluene (40 mL) at 60 °C for 10 h to afford 1.69 g of **1h** (48% yield) as a yellow solid (Rf: 0.50, hexane / EtOAc = 5:1). m.p. 95 – 97 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, 2 H, *J* = 7.8 Hz); 7.84 (d, 2 H, *J* = 7.8 Hz); 7.63 - 7.43 (m, 6 H); 7.34 - 7.21 (m, 3 H); 7.08 (d, 2 H, *J* = 7.8 Hz); 6.99 (s, 1 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 194.06, 192.84, 147.73, 136.73, 136.32, 133.71, 132.91, 131.94, 129.71, 129.60, 129.23, 128.71, 128.54, 128.26, 124.32, 121.51, 106.46, 85.29 ppm, MS (EI, 70 ev) m/z (%): 336 (M⁺, 34.84), 105 (100). HRMS calcd for C₂₄H₁₆O₂: 336.1150, found: 336.1151.

9. 1-phenyl-2-(3-phenylprop-2-ynylidene)butane-1,3-dione (1i).

The reaction of 3-phenylpropiolaldehyde (1.56 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and 1-phenylbutane-1,3-dione (1.62 g, 10 mmol) in toluene (40 mL) at 60 °C for 6 h to afford 173 mg of (*E*)-1i (6% yield) as a yellow oil (Rf: 0.53, hexane / EtOAc = 5:1) and 1.53 g of (*Z*)-1i (55% yield) as a yellow solid (Rf: 0.43, hexane / EtOAc = 5:1). The stereochemistry was determinated by NOESY spectra.

(**Z**)-**1i**: m.p. 82-84 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.98$ (d, 2 H, J = 7.2 Hz); 7.60 (t, 1 H, J = 7.5 Hz); 7.49 (t, 2 H, J = 7.2 Hz); 7.29 - 7.14 (m, 4 H); 6.99 (d, 2 H, J = 7.2 Hz); 2.35 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 195.08$, 194.11, 147.72, 136.02, 133.91, 131.83, 129.68, 129.39, 128.72, 128.19, 122.27, 121.33, 106.34, 85.33, 27.36 ppm, MS (EI, 70 ev) m/z (%): 274 (M⁺, 70.26), 105 (100). HRMS calcd for C₁₉H₁₄O₂: 274.0994, found: 274.0993.

(*E*)-**1i**: ¹H NMR (300 MHz, CDCl₃): $\delta = 7.79$ (d, 2 H, J = 7.2 Hz); 7.59 (t, 1 H, J = 7.2 Hz); 7.54 - 7.36 (m, 8 H); 6.68 (s, 1 H); 2.60(s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 198.12$, 194.20, 148.46, 136.71, 133.28, 132.12, 130.04, 129.34, 128.63, 128.58, 123.17, 121.76, 106.51, 85.68, 30.64 ppm, MS (EI, 70 ev) m/z (%): 274 (M⁺, 70.26), 105 (100). HRMS calcd for C₁₉H₁₄O₂: 274.0994, found: 274.0993.

10. methyl 2-acetyl-5-phenylpent-2-en-4-ynoate (1j).

The reaction of 3-phenylpropiolaldehyde (1.56 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and methyl 3-oxobutanoate (1.16 g, 10 mmol) in toluene (40 mL) at 30 °C for 3 h to afford 1.66 g of **1j** (68% yield, E/Z = 1.2/1) as a yellow oil [Rf: (*E*)-1j, 0.53; (*Z*)-1j, 0.47, hexane / EtOAc = 5:1]. The stereochemistry was determinated by NOESY spectra.

Major (*E*): ¹H NMR (300 MHz, CDCl₃): $\delta = 7.47$ (d, 2 H, J = 7.8 Hz); 7.46 - 7.31(m, 3 H); 7.04 (s, 1 H); 3.82 (s, 3 H); 2.52 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 198.43$, 164.30, 141.81, 132.18, 129.94, 128.49, 123.41, 121.63, 105.42, 85.01, 52.50, 30.46 ppm, MS (EI, 70 ev) m/z (%): 228 (M⁺, 100), HRMS calcd for C₁₄H₁₂O₃: 228.0786, found: 228.0785.

Minor (**Z**): ¹H NMR (300 MHz, CDCl₃): $\delta = 7.46$ (d, 2 H, J = 7.8 Hz); 7.45 - 7.30 (m, 3 H); 7.01 (s, 1 H); 3.90 (s, 3 H); 2.38 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 193.73$, 165.61, 141.01, 132.16, 129.94, 128.45, 124.88, 121.70, 106.60, 85.37, 52.16, 27.48 ppm, MS (EI, 70 ev) m/z (%): 228 (M⁺, 100), HRMS calcd for C₁₄H₁₂O₃: 228.0786, found: 228.0785.

11. ethyl 2-benzoyl-5-phenylpent-2-en-4-ynoate (1k).

The reaction of 3-phenylpropiolaldehyde (1.56 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and ethyl 3-oxo-3-phenylpropanoate (1.92 g, 10 mmol) in toluene (40 mL) at 60 °C for 7 h to afford 1.27 g of **1k** (40% yield, major / minor = 5 / 1) as mixtured yellow oil (Rf: 0.57, hexane / EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = [7.98 \text{ (d, } 1.66 \text{ H, } J = 7.8 \text{ Hz})$, 7.81 (d, 0.34 H, J = 7.8 Hz)]; 7.63 - 7.43 (m, 4 H); 7.39 - 7.18 (m, 3 H); 7.09 (s, 1 H); [7.07 (s, 0.83 H), 6.82 (s, 0.17 H)]; 4.24 (q, 2 H, J = 7.2 Hz); 1.21 (t, 3 H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = (192.71, 192.00)$, (164.22, 163.87), (141.08, 141.02), (136.83, 135.98), (133.72, 133.06), (132.71, 131.90), (129.81, 129.59), 129.34, (128.91, 128.63), (128.45, 128.20), 125.55, (121.97, 121.45), (106.07, 104.70), (85.45, 84.76), (61.64, 61.32), (13.92, 13.89) ppm, MS (EI, 70 ev) m/z (%): 304 (M⁺, 25.26), 105 (100). HRMS calcd for C₂₀H₁₆O₃: 304.1099, found: 304.1098. 12. 1,5-diphenyl-2-(phenylsulfonyl)pent-2-en-4-yn-1-one (**1**).

The reaction of 3-phenylpropiolaldehyde (1.56 g, 12 mmol), AcOH (360 mg, 6 mmol), piperidine (86 mg, 1 mmol), MgSO₄ (240 mg, 2 mmol) and 1-phenyl-2-(phenylsulfonyl)ethanone (2.60 g, 10 mmol) in toluene (40 mL) at 60 °C for 6 h to afford 3.12 g of **11** (80% yield) as a yellow oil (as a single isomer of (*E*)-isomer; Rf: 0.33, hexane / EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.95 (d, 4 H, *J* = 7.2 Hz); 7.62 - 742 (m, 7 H); 7.26 (t, 1 H, *J* = 7.2 Hz); 7.16 (t, 2 H, *J* = 7.5 Hz); 6.89 (d, 2 H, *J* = 8.1 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ = 189.68, 148.46, 139.40, 135.68, 134.12, 133.74, 131.76, 130.02, 129.60, 128.95, 128.55, 128.43, 128.14, 124.03, 120.50, 107.59, 83.07 ppm, MS (EI, 70 ev) m/z (%): 372 (M⁺, 14.43), 105 (100). HRMS calcd for C₂₃H₁₆O₃S: 372.0820, found: 372.0821.

Typical procedure for synthesis of 2-acylfurans : To a solution of **1** (0.5 mmol) and AuCl₃(0.025 mmol, 7.6 mg) in DCM (5 mL), H_2O_2 (30%, 1.5 mmol, 170 mg) was added. The resulting solution was stirred at rt until the reaction was completed (monitored by TLC). After removal of solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexanes : AcOEt = 10 : 1) to give the desired product **2**.

13. 1-(5-benzoyl-2-methylfuran-3-yl)ethanone (2a).

The reaction of **1a** (106 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 2 h to afford **2a** (99.9 mg) in 88% yield as a white solid (Rf: 0.42, hexane / EtOAc = 3:1). m.p. 126-128 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.86 (d, 2 H, *J* = 7.5 Hz); 7.55 (t, 1 H, *J* = 7.5 Hz); 7.44 (t, 2 H, *J* = 7.5 Hz); 7.37 (s, 1 H); 2.70 (s, 3 H); 2.43 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 193.01, 181.85, 162.87, 149.21, 136.61, 132.60, 128.87, 128.35, 123.02, 120.55, 28.86, 14.72 ppm, MS (EI, 70 ev) m/z (%): 228 (M⁺, 70.01), 213 (100). HRMS calcd for C₁₄H₁₂O₃: 228.0786, found: 228.0785.

14. 1-(5-(4-methoxybenzoyl)-2-methylfuran-3-yl)ethanone (2b).

The reaction of 1b (121 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and

AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 17 h to afford **2b** (95 mg) in 74% yield as a yellow solid (Rf: 0.30, hexane / EtOAc = 3:1). m.p. 139-140 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.98 (d, 2 H, *J* = 8.4 Hz); 7.38 (s, 1 H); 6.98 (d, 2 H, *J* = 8.4 Hz); 3.88 (s, 3 H); 2.72 (s, 3 H); 2.45 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 193.34, 180.66, 163.46, 162.46, 149.84, 131.54, 129.39, 123.07, 119.71, 113.82, 55.47, 29.04, 14.90 ppm, MS (EI, 70 ev) m/z (%): 258 (M⁺, 79.40), 135 (100). HRMS calcd for C₁₅H₁₄O₄: 258.0892, found: 258.0891.

15. 1-(2-methyl-5-(4-methylbenzoyl)furan-3-yl)ethanone (2c).

The reaction of **1c** (113 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 11 h to afford **2c** (102 mg) in 84% yield as a yellow solid (Rf: 0.45, hexane / EtOAc = 3:1). m.p. 132-133 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.84 (d, 2 H, *J* = 7.8 Hz); 7.37 (s, 1 H); 7.30 (d, 2 H, *J* = 7.8 Hz); 2.72 (s, 3 H); 2.45 (s, 3 H); 2.43 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 193.19, 181.72, 162.73, 149.60, 143.61, 134.11, 129.20, 129.16, 123.08, 120.18, 28.96, 21.56, 14.83 ppm, MS (EI, 70 ev) m/z (%): 242 (M⁺, 68.18), 227 (100). HRMS calcd for C₁₅H₁₄O₃: 242.0943, found: 242.0943.

16. 1-(2-methyl-5-(4-nitrobenzoyl)furan-3-yl)ethanone (2d).

The reaction of **1d** (103 mg, 0.4 mmol), H₂O₂ (30%) (136 mg, 1.2 mmol) and AuCl₃ (0.020 mmol, 6.1 mg) in DCM (4 mL) was carried out at rt for 11 h to afford **2d** (89 mg) in 82% yield as a yellow solid (Rf: 0.30, hexane / EtOAc = 3:1). m.p. 199-200 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.36 (d, 2 H, *J* = 7.8 Hz); 8.10 (d, 2 H, *J* = 7.8 Hz); 7.47 (s, 1 H); 2.75 (s, 3 H); 2.48 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃):

 δ = 192.89, 180.01, 163.92, 150.06, 149.04, 141.73, 130.10, 123.74, 123.60, 121.52, 29.06, 15.04 ppm, MS (EI, 70 ev) m/z (%): 273 (M⁺, 56.59), 258 (100). HRMS calcd for C₁₄H₁₁NO₅: 273.0637, found: 273.0638.

17. 1-(5-(1-naphthoyl)-2-methylfuran-3-yl)ethanone (2e).

The reaction of **1e** (131 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 14.5 h to afford **2e** (89 mg) in 64% yield as a yellow solid (Rf: 0.39, hexane / EtOAc = 3:1). m.p. 122-123 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.20 (t, 1 H, *J* = 5.7 Hz); 8.02 (d, 1 H, *J* = 8.1 Hz); 7.94-7.86 (m, 1 H); 7.54 (d, 1 H, *J* = 6.9 Hz); 7.53 (t, 3 H, *J* = 7.5 Hz); 7.19 (s, 1 H); 2.74 (s, 3 H); 2.38 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 193.08, 183.75, 163.83, 150.31, 134.64, 133.72, 131.94, 130.54, 128.38, 127.54, 127.36, 126.65, 125.09, 124.20, 123.30, 121.62, 28.95, 14.96 ppm, MS (EI, 70 ev) m/z (%): 278 (M⁺, 100). HRMS calcd for C₁₈H₁₄O₃: 278.0943, found: 278.0943.

18. 1-(4-acetyl-5-methylfuran-2-yl)pentan-1-one (2f).

The reaction of **1f** (96 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 8 h to afford **2f** (66 mg) in 64% yield as a yellow oil (Rf: 0.52, hexane / EtOAc = 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.33 (s, 1 H), 2.74 (t, 2 H, *J* = 7.5 Hz); 2.62 (s, 3 H); 2.40 (s, 3 H); 1.69 - 1.59 (m, 2 H); 1.40 - 1.28 (m, 2 H); 0.89 (t, 3 H, *J* = 7.5 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ = 193.20, 189.20, 161.99, 150.02, 123.01, 116.85, 37.96, 28.88, 26.24, 22.26, 14.68, 13.70 ppm, MS (EI, 70 ev) m/z (%): 208 (M⁺, 8.07), 166 (100). HRMS calcd for C₁₂H₁₆O₃: 208.1099, found: 208.1099.

19. 1-(5-benzoyl-2-ethylfuran-3-yl)propan-1-one (2g).

The reaction of **1g** (120 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 3.5 h to afford **2g** (107 mg) in 83% yield as a yellow oil (Rf: 0.64, hexane / EtOAc = 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.90 (d, 2 H, *J* = 7.2 Hz); 7.56 (t, 1 H, *J* = 7.2 Hz); 7.46 (t, 2 H, *J* = 7.2 Hz); 7.39 (s, 1 H); 3.10 (q, 2 H, *J* = 7.5 Hz); 2.76 (q, 2 H, *J* = 7.5 Hz); 1.29 (t, 3 H, *J* = 7.5 Hz); 1.13 (t, 3 H, *J* = 7.5 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ = 196.03, 181.91, 167.58, 149.49, 136.84, 132.60, 129.01, 128.39, 121.72, 120.15, 34.28, 22.01, 11.55, 7.52 ppm, MS (EI, 70 ev) m/z (%): 256 (M⁺, 39.92), 227 (100). HRMS calcd for C₁₆H₁₆O₃: 256.1099, found: 256.1100.

20. (5-phenylfuran-2,4-diyl)bis(phenylmethanone) (2h).

The reaction of **1h** (168 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 10 h to afford **2h** (154 mg) in 87% yield as white solid (Rf: 0.61, hexane / EtOAc = 3:1). m.p. 131-132 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.03 (d, 2 H, *J* = 7.5 Hz); 7.84 (m, 4 H); 7.65 - 7.35 (m, 10 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 190.71, 182.08, 158.82, 149.91, 137.18, 136.89, 133.42, 132.85, 130.37, 129.69, 129.24, 128.55, 128.45, 128.09, 123.09, 122.54 ppm, MS (EI, 70 ev) m/z (%): 352 (M⁺, 89.27), 105 (100). HRMS calcd for C₂₄H₁₆O₃: 352.1099, found: 352.1100.

21. 1-(5-benzoyl-2-phenylfuran-3-yl)ethanone (2i) and (5-methylfuran-2,4-diyl)bis
-(phenylmethanone) (2i').

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

The reaction of (**Z**)-1i (137 mg, 0.5 mmol), $H_2O_2(30\%)$ (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 12 h to afford 2i (129 mg) in 89% yield as a yellow solid (Rf: 0.48, hexane / EtOAc = 3:1).

The reaction of (*E*)-1i (137 mg, 0.5 mmol), H_2O_2 (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 12 h to afford 2i (34 mg) in 23% yield as a yellow solid and 2i' (82 mg) in 57% yield as a yellow oil (Rf: 0.61, hexane / EtOAc = 3:1).

2i: m.p. 117-118 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.03 - 7.99$ (m, 4 H); 7.65 - 7.48 (m, 7 H); 2.48 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 193.11$, 182.05, 159.69, 150.07, 136.78, 132.91, 130.91, 129.24, 129.06, 128.75, 128.58, 128.45, 123.82, 121.90, 29.77 ppm, MS (EI, 70 ev) m/z (%): 290 (M⁺, 75.50), 275 (100). HRMS calcd for C₁₉H₁₄O₃: 290.0943, found: 290.0943.

2i²: ¹H NMR (300 MHz, CDCl₃) δ = 7.92 (d, 2 H, *J* = 7.2 Hz); 7.78 (d, 2 H, *J* = 7.2 Hz); 7.56 (t, 2 H, *J* = 7.2 Hz); 7.47 (t, 4 H, *J* = 7.2 Hz); 7.34 (s, 1 H); 2.66 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 190.03, 182.01, 163.73, 149.35, 138.05, 136.78, 132.69, 129.03, 128.86, 128.51, 128.44, 122.36, 121.71, 14.62 ppm, MS (EI, 70 ev) m/z (%): 290 (M⁺, 35.91), 105 (100). HRMS calcd for C₁₉H₁₄O₃: 290.0943, found: 290.0942.

22. methyl 5-benzoyl-2-methylfuran-3-carboxylate (2j).

The reaction of (*E*)-1j (114 mg, 0.5 mmol), H_2O_2 (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 36 h to afford 2j (98 mg) in 79% yield as a yellow oil (Rf: 0.61, hexane / EtOAc = 3:1); ¹H NMR (300

MHz, CDCl₃): δ = 7.78 (d, 2 H, *J* = 7.5 Hz); 7.49 - 7.33 (m, 3 H); 3.72 (s, 3 H); 2.59 (s, 3 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 181.65, 163.58, 162.88, 149.14, 136.58, 132.44, 128.74, 128.22, 121.09, 115.42, 51.39, 13.98 ppm, MS (EI, 70 ev) m/z (%): 244 (M⁺, 100). HRMS calcd for C₁₄H₁₂O₄: 244.0736, found: 244.0733.

The title compand could be also afforded from the (Z)-1j in 66% yield.

23. ethyl 5-benzoyl-2-phenylfuran-3-carboxylate (2k).

The reaction of **1k** (152 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 16 h to afford **2k** (117 mg) in 73% yield as a white solid (Rf: 0.70, hexane / EtOAc = 3:1). m.p. 91-92 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.16 - 8.08 (m, 2 H); 8.01 (d, 2 H, *J* = 7.8 Hz); 7.63 (t, 3 H, *J* = 7.2 Hz); 7.56 - 7.48 (m, 5 H); 4.34 (q, 2 H, *J* = 7.2 Hz); 1.35 (t, 3 H, *J* = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ = 182.12, 162.57, 160.67, 149.76, 136.97, 132.84, 130.69, 129.24, 129.10, 128.58, 128.29, 123.01, 115.87, 61.08, 14.18 ppm, MS (EI, 70 ev) m/z (%): 320 (M⁺, 100). Anal calcd for C₂₀H₁₆O₄: C, 74.99; H, 5.03; found: C, 75.00; H, 5.01.

24. phenyl(5-phenyl-4-(phenylsulfonyl)furan-2-yl)methanone (21).

The reaction of **11** (186 mg, 0.5 mmol), H₂O₂ (30%) (170 mg, 1.5 mmol) and AuCl₃ (0.025 mmol, 7.6 mg) in DCM (5 mL) was carried out at rt for 16 h to afford **21** (153 mg) in 79% yield as a colorless oil (Rf: 0.45, hexane / EtOAc = 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.99 - 7.95 (m, 4 H); 7.79 (d, 2 H, *J* =7.5 Hz); 7.65 - 7.55 (m, 2 H); 7.58 - 7.36 (m, 8 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 181.45, 157.88, 149.36, 140.75, 136.18, 133.58, 133.10, 131.18, 129.06, 129.01, 128.57, 128.42, 127.03,

127.00, 126.06, 121.54 ppm, MS (EI, 70 ev) m/z (%): 388 (M^+ , 55.20), 105 (100). HRMS calcd for C₂₃H₁₆O₄S: 388.0769, found: 388.0770.

25. 1,1'-(5,5'-(1,2-diphenylethene-1,2-diyl)bis(2-methylfuran-5,3-diyl))diethanone (3).

The solution of **1a** (0.5 mmol, 106 mg), Ph₃PAuCl (0.025 mmol, 12.4 mg) and AgOTf (0.025 mmol, 6.4 mg) was stirred in DCM (5 mL) at rt for 2 h to afford **3** in 93% yield (E/Z = 1.5/1) as yellow solid.

(*E*)-isomer (Rf: 0.52, hexane / EtOAc = 3:1): mp. 176-177 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.37 - 7.30 (m, 10 H); 5.91 (s, 2 H); 2.20 (s, 12 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 193.95, 157.86, 152.43, 139.95, 130.04, 128.40, 128.07, 127.63, 122.53, 112.81, 28.89, 14.08 ppm, MS (EI, 70 ev) m/z (%): 424 (M⁺, 13.64), 43 (100). HRMS calcd for C₂₈H₂₄O₄: 424.1675, found: 424.1675.

(Z)-isomer (Rf: 0.39, hexane / EtOAc = 3:1): mp. 149-150 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.14 (s, 10 H); 6.29 (s, 2 H); 2.48 (s, 6 H); 2.34 (s, 6 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 194.15, 157.76, 153.24, 139.62, 131.35, 129.36, 127.84, 127.51, 122.72, 112.47, 29.11, 14.37 ppm, MS (EI, 70 ev) m/z (%): 424 (M⁺, 100). HRMS calcd for C₂₈H₂₄O₄: 424.1675, found: 424.1675.

26. 1-(5-(1,2-diphenylcyclopropyl)-2-methylfuran-3-yl)ethanone (4).

To the solution of **1a** (0.5 mmol, 106 mg) and styrene (5 mmol, 521 mg) in DCM (10 mL), AuCl₃ (0.025 mmol, 7.6 mg) was added. The resulting solution was stirred at rt for 12 h. After removal of solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexanes : $Et_2O = 10 : 1$) to give the desired product **4** (90 mg) in 56% yield as a yellow oil (fraction 1 / fraction 2 = 1 / 1.2).

First fraction (Rf: 0.67, hexane / EtOAc = 3:1): ¹H NMR (300 MHz, CDCl₃): δ = 7.18 - 7.10 (m, 5 H); 7.06 (d, 3 H, *J* = 6.9 Hz); 6.81 (d, 2 H, J = 7.8 Hz); 5.90 (s, 1 H); 2.94 (t, 1 H, *J* = 7.5 Hz); 2.57 (s, 3 H), 2.29 (s, 3 H); 2.01- 1.91 (m, 2 H). ¹³C NMR (75.4 MHz, CDCl₃): δ = 194.25, 156.82, 156.58, 137.41, 136.82, 131.37, 128.03, 127.73, 127.64, 127.00, 125.79, 122.25, 105.75, 33.51, 31.24, 29.05, 19.00, 14.42 ppm, MS (EI, 70 ev) m/z (%): 316 (M⁺, 100). HRMS calcd for C₂₂H₂₀O₂: 316.1463, found: 316.1462.

Second fraction (Rf: 0.64, hexane / EtOAc = 3:1): ¹H NMR (300 MHz, CDCl₃): $\delta = 7.32 - 7.22$ (m, 4 H); 7.15 (t, 1 H, J = 7.5 Hz); 7.10 - 7.02 (m, 5 H); 5.94 (s, 1 H); 2.75 (t, 1 H, J = 7.5 Hz); 2.21 (s, 3 H); 2.12 (s, 3 H); 1.96 (t, 1 H, J = 6.6 Hz); 1.67 (q, 1 H, J = 5.4 Hz). ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 194.03$, 157.25, 152.65, 143.12, 137.44, 128.46, 128.27, 128.00, 127.72, 126.68, 126.24, 121.55, 109.00, 32.26, 31.99, 28.88, 18.92, 14.07 ppm, MS (EI, 70 ev) m/z (%): 316 (M⁺, 88.85), 43 (100). HRMS calcd for C₂₂H₂₀O₂: 316.1463, found: 316.1464.

27. 3-oxo-1-phenylprop-1-en-2-yl pivalate (6).

Typical Procedure forsynthesis of 6 and 6': To a solution of 5^2 (0.5 mmol, 108 mg) and catalyst (0.025 mmol) in DCM (5 mL), H₂O₂ (30%, 1.5 mmol, 170 mg) was added. The resulting solution was stirred at rt until the reaction was completed (monitored by TLC). After removal of solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexanes : AcOEt = 10 : 1) to give the desired product **6** as colorless oil.³

(Z)-isomer (Rf: 0.22, hexane / EtOAc = 10:1): ¹H NMR (300 MHz, CDCl₃) δ = 9.40 (s, 1 H), 7.66 - 7.64 (m, 2 H), 7.43-7.41 (m, 3 H), 7.01 (s, 1 H), 1.41 (s, 9 H); ¹³C NMR (75.4 MHz, CDCl₃) δ = 185.46, 175.26, 146.38, 136.39, 131.73, 130.68, 130.30, 128.79, 39.06, 27.10 ppm.

(*E*)-isomer (Rf: 0.36, hexane / EtOAc = 10:1): ¹H NMR (300 MHz, CDCl₃) δ =

9.69 (s, 1 H), 7.45-7.39 (m, 6 H), 1.36 (s, 9 H); ¹³C NMR (75.4 MHz, CDCl₃) δ = 183.96, 176.52, 146.54, 136.57, 131.12, 129.96, 129.74, 128.77, 38.95, 27.15 ppm.

Reference:

- For synthesis of 3-phenylpropiolaldehyde, see: D. W. Knight, H. C. Rost, C. M. Sharland and J. Singkhonrat, *Tetrahedron Lett.*, 2007, 48, 7906–7910.
- 2. For synthesis of **5**, see: A. K. Chakraborti, L. Sharma and R. Gulhane, *Tetrahedron*, 2003, **59**, 7661.
- For the judgement of Z/E isomer of 6, see: C. A. Witham, P. Mauleon, N. D. Shapiro, B. D. Sherry and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 5838.

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

Ph Ph Ph O

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

ppm

.604 \sim

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Dalton Transactions

NNNN

. . . .

オオオオ

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Dalton Transactions 0400 ∞ <

< 83 77 76 \neg

• 68

0

 ∞

 \leftarrow

5.00

1.01 2.04 0.99 3.00

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

		181	162	149	136	123 120								14.	
							Ph		v1e 1e						
up-data sector de la constante	and the first of the sector of		 	mene provide the	matanalaak		11-9-0-01 ⁻⁰ 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-	anting field was at the of The out	mentersona	ally an and the second second second	115-117-11-11-11-11-11-11-11-11-11-11-11-11	 		

Supplementary Material (ESI) for Dalton Transactions This journal is $\textcircled{\mbox{\scriptsize O}}$ The Royal Society of Chemistry 2010

.991 .963

877 260 995 967		716	154
		•	, , ,
	(*)		

193.34	180.66		162.46	149.84		131.54 129.39	npplemen: 123.00 119.123	tary Mate isi© The	rial (ESI) f Royal Soc	or Dalton ⁻	Transactio emistry 20 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ns 12.210.	년 1911년 1911년 1911년 1911년 1911		29.04		
							MeC) L		, T _c	° }_r }_₩	Vle 1e					
 190	180	 170	160	 150	140	130				••••••••••••••••••••••••••••••••••••••	1000 1000 1000 1000 1000 1000 1000 100	 7 0	60	 4 0	30	 10	 mqq

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

193.19 181.72	Supplementary Materia Supplementary Materia	al (ESI) for Dalton Transactions loyal Society of Chemistry 2010 $\begin{array}{c} & & & 0 & & 0 \\ & & & & 0 & & 0 \\ & & & &$	28.96 21.56 14.83	
	Me	Me		
		0		
		JI		

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

0	9
4	\sim
\sim	4
•	•
\sim	\sim

193.20 189.20	161.99 150.02	Supplementary Material (ESI) This journal is © The Royal S 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) for Dalton Transactions ociety of Chemistry 2010 $\mathbb{C} \to 000$ $\mathbb{C} \to 000$ $\mathbb{C} \to 000$ $\mathbb{C} \to 000$ $\mathbb{C} \to 000$	
		n-Bu	Me	

Supplementary Material (ESI) for Dalton Transactions

400010 1.12001 1.12001 1.12001 1.12001

c0 901			167.58		149.49	136.84	132.60 129.01 128.34	pplementa joyrnal is 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ary Materia s © The R	al (ESI) for oyal Socie	Dalton T ety of Che	ransactions mistry 2010					34.28	22.01	11.55 7.52	
								I	Ph)∦ O	o		∃t ït								
																			I	
alumayo di katanya ke			Nandaka di Kalanda kata da			trate or a second day				a Stanighter genera s	1.000 million of the second		10-11-11-11-11-11-11-11-11-11-11-11-11-1	والمجاورة والمراجع	14 ¹ 194109,1304 (1101)	n (an an da an	nd vogesteredningerse			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	 50	40	30	20	10	ppm

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Dalton Transactions

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

·																			·····
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

	Supplementary Material (ESI) for Dalton Transactions	
- П	,工his journal is © The Royal Society of Chemistry 2010	4 00
40	σ	ωm
-	\sim	4 M
• •	•	• •
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Q	$\sim \sim$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

50 00 70

										Ph 🦯		2								
												ılı								
والمتحالية المراجع	discorration by Labo	film beream dan bili da	k, dan se stret, stret black se	فاعتمقنا وبالمع سقطان	ile Black white all them	lå stolenssilver forde		a the state of the s			وروالي المحمد الم		alı aların dığı Beter danı başı	a link, in write a write and the	killenete attentiet fan Aner	Andrea and the state of the second	alation des autoritations	Ann all a file she juma an and a fi	and a south the state	il to an and
1	190	180	170	160	150	140	130	120	110	100	90	80 80	70	60	50	4 0		20	10	ppm

οPiv

177.09

 Supplementary Material (ESI) 8 6	for Dalton Transactions bodiety of Chemistry 2010 7 0 0 7 0 0 0 0	39.06
H C	∕Ph)Piv	
	1994/1941/1941/1944/1944/1944/1944/1944	

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

-1.356

--9.694

136 136 136 128 128		38.9	27.1
	Ph ∮ Piv		

