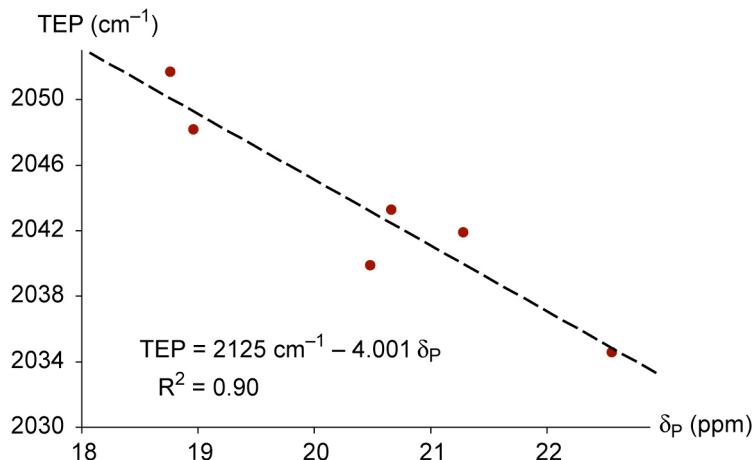


Supporting Information

belonging to

Expanding the family of mesoionic complexes: Donor properties and catalytic impact of palladated isoxazolylidenes

Manuel Iglesias and Martin Albrecht*^a


*School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4,
Ireland.*

E-mail: martin.albrecht@ucd.ie; Fax: (+)353-17162501.

Content

Correlation of measured δ_P with calculated TEP	S2
Synthetic procedures	S2
Structure determination and refinement of 2b	S5

Correlation of measured δ_P with calculated TEP

Synthetic procedures

General comments. All palladation reactions were performed using standard Schlenk techniques under an argon atmosphere unless stated otherwise. Toluene and CH_2Cl_2 were dried by passage through solvent purification columns. Complex **3**,^{S1} and the iodo-azolium salts^{S2} were prepared according to a previously reported procedure, all other reagents were commercially available and were used as received. All ^1H , $^{13}\text{C}\{^1\text{H}\}$, and $^{31}\text{P}\{^1\text{H}\}$ NMR spectra were recorded on Bruker Avance spectrometers, chemical shifts (δ) are given in ppm and were referenced to residual solvent ^1H and ^{13}C resonances, and to external H_3PO_4 , respectively (coupling constants J in Hz). Assignments are based either on distortionless enhancement of polarization transfer (DEPT) experiments or on homo- and heteronuclear shift correlation spectroscopy. Elemental analyses were performed by the Microanalytical Laboratory of the ETH Zurich (Switzerland).

4-Iodo-1,3,5-trimethylisoxazolium triflate (1a). Methyl trifluoromethanesulfonate (methyl triflate; 0.24 ml, 2.2 mmol) was added to a solution of 4-iodo-1,3,5-trimethylisoxazol in dry CH_2Cl_2 (5 mL) and the resulting mixture was stirred for 16 h at ambient temperature. The solvent

S1 Y. Han, H. V. Huyn and G. K. Tan, *Organometallics*, 2007, **26**, 6581.

S2 (a) H. B. Bensuan and M. S. R. Naidu, *Biochemistry*, 1967, **6**, 12; (b) M. Iglesias, M. Albrecht, *submitted*.

was evaporated under reduced pressure, and the remaining residue was redissolved in CH_2Cl_2 and precipitated with Et_2O . The residue was washed with Et_2O (3×10 mL), yielding **1a** as a white solid (630 mg, 81%). ^1H NMR (360 MHz, CDCl_3): δ 4.29 (s, 3H, N–CH₃), 2.62, 2.58 (2 \times s, 3H, C–CH₃). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3): δ 174.0, 162.8 (2 \times C–Me), 121.0 ($^1\text{J}_{\text{CF}} = 353.7$ Hz, CF₃), 67.2 (C–I), 40.3 (N–CH₃), 14.5, 13.8 (2 \times C–CH₃). Anal. Calcd. for $\text{C}_7\text{H}_9\text{F}_3\text{INO}_4\text{S}$ (387.12): C, 21.95; H, 2.34; N, 3.62. Found: C, 21.95; H, 2.25; N, 3.58.

4-Iodo-1,3,5-trimethylisoxazolium BF_4 (1b).

Trimethyloxonium tetrafluoroborate (75 mg, 0.50 mmol) was added to a solution of 4-iodo-3,5-dimethylisoxazole (110 mg, 0.50 mmol) in dry CH_2Cl_2 (3 mL) and the resulting mixture was stirred for 16 h at ambient temperature. The solvent was evaporated under reduced pressure, and the remaining residue was redissolved in CH_2Cl_2 and precipitated with Et_2O . The residue was washed with Et_2O (3×5 mL), yielding **1b** as a white solid (130 mg, 85%). ^1H NMR (360 MHz, CDCl_3): δ 4.38 (s, 3H, N–CH₃), 2.71, 2.68 (2 \times s, 3H, C–CH₃). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3): δ 174.4, 162.6 (2 \times C–Me), 66.9 (C–I), 40.3 (N–CH₃), 13.7, 13.0 (2 \times C–CH₃). Anal. Calcd. for $\text{C}_6\text{H}_{10}\text{BF}_4\text{INO}$ (324.85): C, 22.18; H, 2.79; N, 3.96. Found: C, 22.58; H, 2.78; N, 3.96.

Trans-(1,3,5-trimethylisoxazolin-4-ylidene)iodobis(triphenylphosphine)palladium(II) BF_4 (2b).

Solid $\text{Pd}(\text{PPh}_3)_4$ (144 mg, 0.125 mmol) and 4-iodo-1,3,5-trimethylisoxazolium tretrafluoroborate **1b** (40 mg, 0.125 mmol) were dissolved in dry toluene (10 mL). After stirring for 16 h at ambient temperature, the resulting pale orange suspension was concentrated to dryness. The precipitate was redissolved in CH_2Cl_2 (3 mL) and precipitated with Et_2O (3×10 mL), subsequently washed with copious amounts of Et_2O until the filtrate was colourless and dried under vacuum to afford **2b** as a pale yellow solid (100 mg, 84%). ^1H NMR (360 MHz, CD_2Cl_2): δ 7.66 – 7.40 (m, 30H, H_{ar}), 3.88 (s, 3H, N–CH₃), 2.06, 1.76 (2 \times s, 3H, C–CH₃). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CD_2Cl_2): δ 167.9 ($^2\text{J}_{\text{CP}} = 3.8$ Hz, C–Pd), 162.6 (C–Me), 134.2 ($^2\text{J}_{\text{CP}} = 6.2$ Hz, C_{ar}), 131.4 (C_{ar}), 129.2 ($^1\text{J}_{\text{CP}} = 25.1$ Hz, C_{ar}), 128.8 ($^3\text{J}_{\text{CP}} = 5.2$ Hz, C_{ar}), 39.6 (N–CH₃), 15.2, 13.7 (2 \times C–CH₃). ^{31}P NMR (202 MHz, CD_2Cl_2): δ 23.5 (PPh₃). Anal. Calcd. for $\text{C}_{42}\text{H}_{39}\text{BF}_4\text{INOP}_2\text{Pd}$ (955.84): C, 52.78; H, 4.11; N, 1.47. Found: C, 52.44; H, 4.27; N, 1.51.

General procedure for the preparation of the palladium complexes 4–7. Solid $\text{Pd}(\text{PPh}_3)_4$ and the azolium triflate (1 molequiv.) were dissolved in dry CH_2Cl_2 and stirred for 16 h at ambient temperature. After concentrating the pale orange solution to 3 mL, the product precipitated by addition of Et_2O (10 mL). The precipitate was redissolved into CH_2Cl_2 (3 mL) and precipitated with Et_2O (3×), and subsequently washed with Et_2O until the filtrate was colourless. The residue was then dried in vacuo.

Trans-(1,3-dimethylimidazolin-4-ylidene)iodobis(triphenylphosphine)palladium(II) triflate (4). Starting from $\text{Pd}(\text{PPh}_3)_4$ (288 mg, 0.25 mmol) and 4-iodo-1,3-dimethylimidazolium triflate (105 mg, 0.25 mmol) in CH_2Cl_2 (20 mL). Yield for 4: 180 mg (72%). ^1H NMR (360 MHz, CD_2Cl_2): δ 8.17 (s, 1H, NCHN), 7.62–7.45 (m, 30H, H_{ar}), 5.70 (s, 1H, H_{imi}), 3.31, 3.24 (2 × s, 3H, N– CH_3). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CD_2Cl_2): δ 145.7 ($^2J_{\text{CP}} = 7.1$, C–Pd), 136.7 (NCHN), 134.8 ($^2J_{\text{CP}} = 4.9$, C_{ar}), 131.5 (C_{ar}), 131.0 ($^1J_{\text{CP}} = 20.1$, C_{ar}), 128.8 ($^3J_{\text{CP}} = 4.1$, C_{ar}), 123.3 ($^3J_{\text{CP}} = 3.8$, $\text{C}_{\text{imi}}\text{--H}$), 122.53 ($^1J_{\text{CF}} = 255.1$ Hz, CF_3), 38.0, 35.7 (2 × N– CH_3). ^{31}P NMR (202 MHz, CD_2Cl_2): δ 20.66 (PPh_3). Anal. Calcd. for $\text{C}_{42}\text{H}_{38}\text{F}_3\text{IN}_2\text{O}_3\text{P}_2\text{PdS}$ (1003.09) × Et_2O : C, 51.29; H, 4.49; N, 2.60. Found: C, 51.39; H, 4.12; N, 2.91.

Trans-(1,2,3,5-tetramethylimidazolin-4-ylidene)iodobis(triphenylphosphine)palladium(II) triflate (5). Starting from $\text{Pd}(\text{PPh}_3)_4$ (288 mg, 0.25 mmol) and 4-iodo-1,2,3,5-tetramethylimidazolium triflate (100 mg, 0.25 mmol) in CH_2Cl_2 (10 ml). Yield 175 mg (0.17 mmol, 68%). Analytically pure material was obtained by recrystallisation of 5 from CH_2Cl_2 / Et_2O . ^1H NMR (360 MHz, CD_2Cl_2): δ 7.60–7.40 (m, 30H, H_{ar}), 3.07, 3.03 (2 × s, 3H, N– CH_3), 1.96, 1.59 (2 × s, 3H, CCH_3). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CD_2Cl_2): δ 142.3 (NCN), 137.4 ($^2J_{\text{CP}} = 8.8$, C–Pd), 134.5 ($^2J_{\text{CP}} = 6.1$, C_{ar}), 131.2 (C_{ar}), 130.6 ($^1J_{\text{CP}} = 24.8$, C_{ar}), 128.3 ($^3J_{\text{CP}} = 5.2$, C_{ar}), 126.8 ($^3J_{\text{CP}} = 4.8$, $\text{C}_{\text{imi}}\text{--Me}$), 121.0 ($^1J_{\text{CF}} = 270.0$ Hz, CF_3), 36.6, 32.1 (2 × N– CH_3), 10.9, 10.3 (2 × $\text{C}_{\text{imi}}\text{--CH}_3$). ^{31}P NMR (202 MHz, CD_2Cl_2): δ 20.48 (PPh_3). Anal. Calcd. for $\text{C}_{43}\text{H}_{40}\text{F}_3\text{IN}_2\text{O}_3\text{P}_2\text{PdS}$ (1031.15) × 0.5 CH_2Cl_2 : C, 49.69; H, 4.22; N, 2.60. Found: C, 49.23; H, 3.90; N, 2.58.

Trans-(1,3-dimethylpyridin-2-ylidene)iodobis(triphenylphosphine)palladium(II) triflate (6). Starting from $\text{Pd}(\text{PPh}_3)_4$ (288 mg, 0.25 mmol) and 2-iodo-1,3-dimethylpyridinium triflate (94 mg,

0.25 mmol) in CH_2Cl_2 (20 mL). Yield 192 mg (0.19 mmol, 76%). ^1H NMR (360 MHz, CD_2Cl_2): δ 7.88 (d, $^3J_{\text{HH}} = 5.9$ Hz, 1H, H_{py}), 7.58–7.43 (m, 30H, H_{ar}), 6.97–6.89 (m, 2H, H_{py}), 4.13 (s, 3H, $\text{N}-\text{CH}_3$), 2.44 (s, 3H, $\text{C}-\text{CH}_3$). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CD_2Cl_2): δ 193.7 ($^2J_{\text{CP}} = 4.9$ Hz, C–Pd), 144.9 ($^2J_{\text{CP}} = 2.2$ Hz, C_{py}), 143.0 (C_{py}), 138.5 (C_{py}), 134.8 (broad, C_{ar}), 132.0 (C_{ar}), 130.5 ($^1J_{\text{CP}} = 25.2$ Hz, C_{ar}), 129.2 ($^3J_{\text{CP}} = 5.1$ Hz, C_{ar}), 123.3 ($\text{C}_{\text{py}}-\text{Me}$), 121.5 ($^1J_{\text{CF}} = 319.3$ Hz, CF_3), 52.5 ($\text{N}-\text{CH}_3$), 24.6 ($\text{C}_{\text{py}}-\text{CH}_3$). ^{31}P NMR (202 MHz, CD_2Cl_2): δ 18.96 (PPh_3). Anal. Calcd. for $\text{C}_{44}\text{H}_{39}\text{F}_3\text{INO}_3\text{P}_2\text{PdS}$ (1014.13): C, 52.11; H, 3.88; N, 1.38. Found: C, 52.18; H, 3.79; N, 1.40.

Trans-(1,3-dimethylimidazolin-2-ylidene)iodobis(triphenylphosphine)palladium(II) triflate (7). Starting from $\text{Pd}(\text{PPh}_3)_4$ (288 mg, 0.25 mmol) and 2-iodo-1,3-dimethylimidazolium triflate (92 mg, 0.25 mmol) in CH_2Cl_2 (20 mL). Yield 162 mg (65%). ^1H NMR (360 MHz, $\text{DMSO}-d_6$): δ 7.60–7.45 (m, 30H, H_{ar}), 6.72 (s, 2H, H_{imi}), 3.26 (s, 6H, $\text{N}-\text{CH}_3$). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CD_2Cl_2): δ 162.3 ($^2J_{\text{CP}} = 8.4$ Hz, C–Pd), 134.2 ($^2J_{\text{CP}} = 6.2$ Hz, C_{ar}), 131.6 (C_{ar}), 130.1 ($^1J_{\text{CP}} = 25.7$ Hz, C_{ar}), 128.9 ($^3J_{\text{CP}} = 5.2$ Hz, C_{ar}), 124.7 (C_{imi}), 121.0 ($^1J_{\text{CF}} = 321.3$ Hz, CF_3), 37.0 ($\text{N}-\text{CH}_3$). ^{31}P NMR (202 MHz, CD_2Cl_2): δ 18.76 (PPh_3). Anal. Calcd. for $\text{C}_{42}\text{H}_{38}\text{F}_3\text{IN}_2\text{O}_3\text{P}_2\text{PdS}$ (1003.11): C, 50.29; H, 3.82; N, 2.79. Found: C, 50.23; H, 3.85; N, 2.77.

Structure determination and refinement of 2b

Suitable crystals of **2b** were obtained as yellow plates. The intensity data were collected at 173 K on a Stoe Mark II-Image Plate Diffraction System equipped with a two-circle goniometer and using $\text{MoK}\alpha$ graphite monochromated radiation ($\lambda = 0.71073$ Å). The mage plate distance was 130 mm. The structure was solved by direct methods using SHELXS-97^{S3} and refined by full-matrix least-squares on F^2 with SHELXL-97.^{S2} The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. A semi-empirical absorption correction was applied using the MULscanABS routine in PLATON.^{S4}

The crystal was a twin. As a result of the twin integration, 35% of reflections are overlapping and only 65% have been used for the structure refinement. Further details on data collection and refinement parameters are collected in Table S1. Crystallographic data (excluding structure

S3 G. M. Scheldrick, *Acta Crystallogr. A*, 2008, **64**, 112.

S4 A. L. Spek, *Acta Crystallogr. D*, 2009, **65**, 148.

factors) for structure **2b** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC [xxx](#). Copies of the data can be obtained free of charge on application to CCDS, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (int.) +44-1223-336-033; E-mail: deposit@ccds.cam.ac.uk].

Table S1 Crystallographic data for complex **2b**.

crystal colour, shape	yellow plate
crystal size /mm	0.30 × 0.18 × 0.12
empirical formula	C ₄₂ H ₄₁ BF ₄ INO ₃ P ₂ Pd
<i>F</i> _w /g mol ⁻¹	989.81
<i>T</i> /K	173(2)
crystal system	triclinic
space group	P-1 (No. 2)
unit cell dimensions	
<i>a</i> /Å	13.3917(9)
<i>b</i> /Å	15.7897(10)
<i>c</i> /Å	20.5894(15)
α /deg	92.386(6)
β /deg	99.693(6)
γ /deg	90.623(5)
<i>V</i> /Å ³	4287.1(5)
<i>Z</i>	4
<i>D</i> _{calc} /g cm ⁻³	1.534
μ /mm ⁻¹	1.283
measured reflections	18577
independent reflections	9996
observed reflections [<i>I</i> > 2 σ (<i>I</i>)]	7997
<i>R</i> _{int}	0.0708
transmission range	0.588 – 0.934
parameters restraints	974, 0
<i>R</i> ₁ , ^a <i>wR</i> ₂ ^b	0.1155, 0.3298
GOF	1.082
min/max residual density /e Å ⁻³	-1.071, 2.029

^a $R_1 = \sum ||F_O| - |F_C|| / \sum |F_O|$ for all $I > 2\sigma(I)$ ^b $wR_2 = [\sum w(F_O^2 - F_C^2)^2 / \sum (w(F_O^2))^{1/2}]^{1/2}$