Electronic Supplementary Information

Discovery of a Strongly Apoptotic Ruthenium Complex through Combinatorial Coordination Chemistry

Seann P. Mulcahy,^a Katharina Gründler,^b Corazon Frias,^b Laura Wagner,^b Aram Prokop,^b

and Eric Meggers^a

^aFachbereich Chemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany; ^bKliniken der Stadt Köln gGmbH, Neufelder Strasse 34, 51067 Köln, Germany

Table of Contents:

1.) Materials and Methods	S2
2.) Analytical Data for Complexes 3a-i	S3
3.) Bidentate Ligands for Library Synthesis	S12
4.) Cytotoxicity Data for Library Members	S14
5.) Validation of Library Quality	S16

1.) Materials and Methods

All preparative-scale reactions were performed in round-bottom flasks or test tubes equipped with rubber septa and a magnetic stirbar under an inert argon or nitrogen atmosphere. Thin layer chromatography was performed with Silicycle (250 μ m, indicator F254) or Merck (60 F₂₅₄) plates. Silica gel chromatography was performed with Silia-P Flash Silica gel from Silicycle or Kieselgel 60 M from Macherey-Nagel. Reactions performed in 96-well plates (250 μ L well volume, round bottom) were heat-sealed with adhesive aluminum foil and shaken on a KEM-Lab Vortex Mixer from J-KEM Scientific equipped with a nitrogen balloon. Anhydrous DMF, ethylene glycol, and EtOH were obtained from commercial sources and further dried over molecular sieves (4 Å, 8-12 mesh). All other solvents were HPLC grade quality obtained from Fisher or VWR unless otherwise noted. All reagents, including all bidentate ligands and precursor complexes, were either obtained from Acros, Aldrich, Strem, or Alfa Aesar and used without further purification or synthesized from literature procedures providing comparable results.

NMR spectra were recorded on a Bruker Avance (600 MHz), Bruker AM (500 MHz), Bruker DRX (400 MHz) or Bruker DMX (360 mHz) spectrometer. NMR standards used are as follows: (¹H NMR) MeOH- d_4 – 3.31 ppm, MeCN- d_3 – 1.94 ppm. (¹³C NMR) MeOH- d_4 – 49.00 ppm, MeCN- d_3 – 1.32 ppm. ¹H NMR data are reported as follows: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad), coupling constant (Hz), and integration. High resolution mass spectra were obtained on a Micromass AutoSpec instrument using either CI or ES ionization or a Thermo Finnigan LTQ FT instrument using ES ionization. Low resolution mass spectra were were obtained on an LC platform from Micromass using ESI technique. Infrared spectra

were recorded on a Bruker IFS 88, Perkin Elmer 1600 series FTIR, or Nicolet 510 M FT-IR spectrometer. Photolyses were performed with a medium pressure Hg lamp (150 W or 450 W). LC/MS measurements were performed on an Agilent Technologies 1200 Series HPLC system with an Agilent 6120 Quadrupole MS. HPLC separation was performed on an Agilent 1200 Series HPLC System with UV detection and automated fraction collection. Absorbance and fluorescence measurements were recorded on a Molecular Devices SpectraMax M5 plate reader.

2.) Analytical Data for Complexes 3a-i

Compound 3a. In a test tube, a mixture of precursor complex **2** (5 mg, 0.011 mmol) in DMF (555 μ L) was treated with a neutral bidentate ligand, tBu₂bpy (3.3 mg, 0.012 mmol), and heated to 75 °C (oil bath temperature) with shaking, upon which a deep purple solution developed.

After 3 hours, a 20 mM solution of deprotonated 2-(2'-

hydroxyphenyl)oxazoline (phox) was prepared in 10:1 EtOH:H₂O by mixing 2-(2'hydroxyphenyl)oxazoline (Hphox) in EtOH with an appropriate amount of 200 mM aqueous LiOH. This solution (555 μ L) was added to the reaction mixture and heated to 80 °C for another 3 hours. The resulting solution was concentrated *in vacuo* and purified by column chromatography on silica gel using mixtures of MeCN and 100:3:1 MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated with saturated aqueous NH₄PF₆. The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide a 1:1 diastereomeric mixture of [Ru(bpy)(tBu₂bpy)(phox)]PF₆ as a purple-brown film (4.8 mg, 60%): IR (thin film) y (cm⁻¹) 3439, 3066, 2963, 2872, 1687, 1653, 1616, 1469, 1445, 1414, 1348, 1238, 1201, 1157, 1129, 1071, 1023, 928, 849, 766, 606. ¹H NMR (MeCN- d_3) δ (ppm) 8.56-8.58 (m, 2 H), 8.39-8.45 (m, 9 H), 8.30-8.33 (m, 3 H), 8.05 (t, J = 8.1 Hz, 1 H), 7.64-7.80 (m, 7 H), 7.51-7.61 (m, 4 H), 7.44-7.46 (m, 2 H), 7.20-7.26 (m, 4 H), 7.13-7.18 (m, 3 H), 4.36-4.44 (m, 2 H), 4.14-4.24 (m, 2 H), 1.50 (s, 9 H), 1.47 (s, 9 H), 1.38 (s, 14 H), 1.36 (s, 16 H). ¹³C NMR (MeCN- d_3) δ (ppm) 159.2, 158.9, 158.8, 136.6, 127.9, 126.9, 125.1, 124.0, 123.8, 123.5, 122.3, 121.1, 74.1, 67.6, 41.4, 36.2, 35.9, 35.8, 31.0, 30.8, 30.7, 30.6. HRMS (ESI) calcd for RuC₃₇H₄₀N₅O₂ (M-PF₆)⁺ 688.2220, found (M-PF₆)⁺ 688.2225.

Compound 3b. In a test tube, a mixture of precursor complex 2 (5 mg, 0.011 mmol) in DMF (555 μ L) was treated with a neutral bidentate ligand, nonyl₂bpy (5 mg, 0.012 mmol), and heated to 75 °C (oil bath temperature) with shaking, upon which a deep purple solution developed. After 3

hours, a 20 mM solution of a monoanionic ligand, lithium 4-bromopicolinate, was prepared in 10:1 EtOH:H₂O by mixing 4-bromopicolinic acid in EtOH with an appropriate amount of 200 mM aqueous LiOH. This solution (555 μ L) was added to the reaction mixture and heated to 80 °C for another 3 hours. The resulting solution was

concentrated *in vacuo* and purified by column chromatography on silica gel using mixtures of MeCN and 100:3:1 MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated with saturated aqueous NH₄PF₆. The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide a 1:1 diastereometric mixture of $[Ru(bpy)(nonyl_2bpy)(4$ bromopicolinate)]PF₆ as an orange-red film (6.0 mg, 60%): IR (thin film) v (cm⁻¹) 3067, 2925, 2854, 1687, 1616, 1539, 1469, 1444, 1420, 1347, 1237, 1156, 1070, 954, 767. ¹H NMR (MeCN- d_3) δ (ppm) 8.78 (d, J = 5.4 Hz, 1 H), 8.60 (d, J = 5.6 Hz, 1 H), 8.45-8.49 (m, 2 H), 8.34-8.40 (m, 4 H), 8.27-8.28 (m, 2 H), 8.16-8.17 (m, 2 H), 8.00-8.06 (m, 3 H), 7.81-7.89 (m, 4 H), 7.61-7.65 (m, 2H), 7.48-7.53 (m, 4 H), 7.41-7.42 (d, J = 6.0 Hz, 1 H),7.31-7.35 (m, 3 H), 7.19-7.25 (m, 3 H), 7.05-7.07 (m, 2 H), 2.82-2.87 (m, 4 H), 2.69-2.75 (m, 4 H), 1.62-1.69 (m, 4 H), 1.73-1.77 (m, 4 H), 1.26-1.41 (m, 48 H), 0.85-0.88 (m, 12 H). ¹³C NMR (MeCN-d₃) δ (ppm) 171.1, 171.0, 159.6, 159.0, 158.3, 157.9, 157.8, 157.8, 157.4, 155.6, 155.6, 154.2, 153.8, 153.8, 153.1, 152.2, 151.8, 151.7, 151.6, 151.1, 151.0, 150.3, 137.0, 136.9, 136.6, 135.7, 133.4, 131.5, 130.5, 137.7, 127.6, 127.5, 127.5, 127.2, 126.9, 126.9, 126.7, 124.4, 124.3, 124.1, 124.0, 123.9, 123.8, 123.7, 40.8, 35.3, 35.2, 35.1, 35.0, 35.0, 32.0, 32.0, 32.0, 30.5, 30.4, 30.3, 30.3, 29.6, 29.6, 29.6, 29.5, 29.5, 29.5, 29.4, 29.4, 29.4, 29.3, 29.2, 22.8, 22.8, 13.8, 13.8. HRMS (ESI) calcd for $RuC_{44}H_{55}N_5O_2Br (M-PF_6)^+$ 866.2577, found $(M-PF_6)^+$ 866.2588.

Compound 3c. In a test tube, a mixture of precursor complex 2 (5 mg, 0.011 mmol) in DMF (555 μ L) was treated with a neutral bidentate ligand, nonyl₂bpy (5 mg, 0.012 mmol), and heated to 75 °C (oil bath temperature) with shaking, upon

which a deep purple solution developed. After 3

hours, a 20 mM solution of a monoanionic ligand, lithium 4-chloropicolinate, was prepared in 10:1 EtOH:H₂O by mixing 4-chloropicolinic acid in EtOH with an appropriate amount of 200 mM aqueous LiOH. This solution (555 µL) was added to the reaction mixture and heated to 80 °C for another 3 hours. The resulting solution was concentrated *in vacuo* and purified by column chromatography on silica gel using mixtures of MeCN and 100:3:1 MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated with saturated aqueous NH_4PF_6 . The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide a 1:1 diastereomeric mixture of [Ru(bpy)(nonyl₂bpy)(4chloropicolinate)]PF₆ as an orange-red film (5.7 mg, 60%): IR (thin film) y (cm⁻¹) 3438, 3070. 2925. 2855, 1686, 1464, 1420, 1339, 1296, 1152, 1024, 818, 766, 482, 427. $^1\mathrm{H}$ NMR (MeCN- d_3) δ (ppm) 8.79 (d, J = 5.2 Hz, 1 H), 8.61 (d, J = 5.8 Hz, 1 H), 8.46-8.48 (m, 2 H), 8.34-8.41 (m, 4 H), 8.28 (d, J = 3.9 Hz, 2 H), 8.00-8.06 (m, 5 H), 7.80-7.87 (m, 4 H), 7.61-7.64 (m, 3 H), 7.48-7.50 (m, 2 H), 7.41-7.44 (m, 3 H), 7.32-7.39 (m, 3 H), 7.20-7.24 (m, 2 H), 7.05-7.07 (m, 2 H), 2.83-2.85 (m, 4 H), 2.70-2.72 (m, 4 H), 1.73-1.76 (t, 4 H), 1.63-1.66 (t, 4 H), 1.26-1.39 (m, 48 H), 0.85 (t, 12 H), 13 C NMR (MeCN-d₃) δ (ppm) 171.8, 171.8, 160.2, 158.9, 158.5, 158.5, 158.4, 156.5, 156.5, 154.8, 154.8, 154.4, 152.8, 152.5, 152.4, 152.3, 152.2, 152.0, 151.6, 151.6, 150.9, 145.5, 137.5, 137.2, 136.3, 129.1, 128.3, 128.2, 128.1, 127.8, 127.5, 127.5, 127.3, 125.0, 124.9, 124.7, 124.6, 124.5, 124.4, 124.4, 41.4, 35.9, 35.8, 35.7, 35.6, 35.6, 32.6, 31.1, 31.0, 30.9, 30.9, 30.2, 30.2, 30.2, 30.1, 30.1, 30.0, 30.0, 29.8, 29.8, 23.4, 23.4, 14.4. HRMS (ESI) calcd for $RuC_{44}H_{55}N_5O_2Cl (M-PF_6)^+ 822.3082$, found $(M-PF_6)^+ 822.3096$.

Compound 3d. Ru(bpy)₂Cl₂ (9.5 mg, 0.02 mmol) in EtOH (1.76 mL) was treated with 1.05 equivalents of a solution of deprotonated 2-(2'-hydroxyphenyl)oxazoline in 10:1 EtOH:H₂O (prepared with one equivalent LiOH) and refluxed for 6 hours. The resulting solution was concentrated *in vacuo* and purified by column chromatography on silica gel using mixtures of MeCN

and 100:3:1 MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated as with saturated aqueous NH₄PF₆. The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide a purple film (6.8 mg, 57%): IR (thin film) y (cm⁻¹) 3484, 3035, 1617, 1470, 1444, 1419, 1342, 1239, 1071, 1018, 928, 767, 731, 425. ¹H NMR (MeCN-*d*₃) δ (ppm) 8.78-8.81 (m, J = 6.8 Hz, 2 H), 8.47 (d, J = 8.1 Hz, 1 H), 8.42 (d, J = 8.1 Hz, 1 H), 8.35 (d, J = 8.1 Hz, 2 H), 8.06 (t J = 7.7 Hz, 1 H), 7.95 (t, J = 8.1 Hz, 1 H), 7.75-7.85 (m, 3 H), 7.62 (t, J = 6.4 Hz, 1 H), 7.48-7.56 (m, 3 H), 7.11-7.18 (m, 2 H), 7.02 (t, J = 7.7 Hz, 1 H), 6.34 (d, J = 8.6 Hz, 1 H), 6.26 (br m, 1 H), 4.40-4.47 (m, 1 H), 4.20-4.26 (m, 1 H), 3.54

(br m, 1 H), 2.88 (br m, 1 H). ¹³C NMR (MeCN- d_3) δ (ppm) 160.6, 159.2, 159.0, 158.7, 154.6, 152.7, 152.4, 151.4, 136.9, 136.7, 136.5, 135.6, 127.7, 127.0, 126.9, 126.5, 124.4, 124.1, 124.0, 123.9, 67.8, 54.7, 41.4. HRMS (ESI) calcd for RuC₂₉H₂₄N₅O₂ (M-PF₆)⁺ 576.0988, found (M-PF₆)⁺ 576.0993.

Compound 3e. Ru(tBu₂bpy)₂Cl₂ (6 mg, 0.008 mmol) in EtOH (800 μ L) was treated with 1.1 equivalents of a solution of lithium 8-phenoxyquinoline in 10:1 EtOH:H₂O (prepared from 8-hydroxyquinoline and LiOH, 100 mM) and refluxed for 6 hours. The resulting solution was concentrated *in vacuo* and

purified by column chromatography on silica gel using mixtures of MeCN and 100:3:1 MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated as with saturated aqueous NH₄PF₆. The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide a purple-red film (4.1 mg, 59%): IR (thin film) y (cm⁻¹) 3435, 2961, 2908, 2873, 1688, 1613, 1566, 1534, 1497, 1481, 1457, 1414, 1369, 1338, 1279, 1202, 1130, 1027, 848, 830, 605. ¹H NMR (MeOH-*d*₄) δ (ppm) 8.56-8.67 (m, 5 H), 8.06 (d, J = 8.6 Hz, 1 H), 7.82 (dd, J = 2.6, 6.3 Hz, 2 H), 7.61 (d, J = 6.0 Hz, 1 H), 7.58 (dd, J = 2.2, 6.3 Hz, 1 H), 7.47 (dd, J = 1.5, 4.9 Hz, 1 H), 7.41 (dd, J = 2.2, 6.3 Hz, 1 H), 7.32-7.37 (m, 3 H), 7.17 (dd, J = 4.9, 8.6 Hz, 1 H), 6.98 (d, J = 7.8 Hz, 1 H), 6.89 (d, J = 6.9 Hz, 1 H), 1.46 (s, 9 H), 1.45 (s, 9 H), 1.42 (s, 9 H), 1.41 (s, 9 H). ¹³C NMR (MeCN-*d*₃) δ (ppm) 161.6, 161.3,

160.7, 158.8, 158.5, 158.4, 151.9, 151.1, 147.5, 136.6, 124.8, 124.5, 124.5, 124.2, 122.6, 121.7, 121.5, 121.4, 47.8, 36.2, 36.1, 36.1, 36.0, 30.7, 30.6, 30.6, 30.5, 9.2. HRMS (ESI) calcd for $RuC_{45}H_{54}N_5O (M-PF_6)^+$ 782.3366, found $(M-PF_6)^+$ 782.3375.

Compound 3f. Ru(tBu₂bpy)₂Cl₂ (6 mg, 0.008 mmol) in EtOH (800 μ L) was treated with 1.1 equivalents of a solution of lithium 2-picolinate in 10:1 EtOH:H₂O (prepared from picolinic acid and LiOH, 100 mM) and refluxed for 6 hours. The resulting solution was concentrated *in vacuo* and purified by column

chromatography on silica gel using mixtures of MeCN and 100:3:1 MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated as with saturated aqueous NH₄PF₆. The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide an orange film (6.3 mg, 94%): IR (thin film) y (cm⁻¹) 3423, 2961, 1636, 1481, 1413, 1336, 1203, 1140, 1026, 849, 829, 607. ¹H NMR (MeCN-*d*₃) δ (ppm) 8.69 (d, J = 6.2 Hz, 1 H), 8.48 (dd, J = 2.0, 14.3 Hz, 2 H), 8.41 (dd, J = 1.7, 8.9 Hz, 2 H), 8.05 (d, J = 7.6 Hz, 1 H), 7.87 (td, J = 1.5, 7.6 8.9 Hz, 1 H), 7.82 (d, J = 5.9 Hz, 1 H), 7.72 (d, J = 5.7 Hz, 1 H), 7.67 (dd, J = 2.0, 6.2 Hz, 1 H), 7.45-7.56 (m, 3 H), 7.33-7.41 (m, 1 H), 7.22-7.28 (m, 2 H), 1.47 (s, 9 H), 1.45 (s, 9 H), 1.38 (s, 9 H), 1.37 (s, 9 H). ¹³C NMR (MeCN-*d*₃) δ (ppm) 162.2, 161.9, 161.2, 159.9, 158.7, 158.6, 158.1, 154.9, 154.6, 153.6, 152.2, 151.6, 151.4, 151.1, 137.9, 129.2, 128.0, 125.6, 125.3, 124.7, 124.4, 122.1, 121.9, 121.7, 121.6, 41.2, 36.3, 36.2, 36.1, 36.1,

30.7, 30.6, 30.5, 30.5. HRMS (ESI) calcd for $RuC_{42}H_{52}N_5O_2$ (M-PF₆)⁺ 760.3159, found (M-PF₆)⁺ 760.3163.

Compound 3g. Ru(tBu₂bpy)₂Cl₂ (6 mg, 0.008 mmol) in EtOH (800 μ L) was treated with 1.1 equivalents of a solution of tBu₂bpy in EtOH (100 mM) and refluxed for 6 hours. The resulting solution was concentrated *in vacuo* and purified by column chromatography on silica gel using mixtures of MeCN and 100:3:1

MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated as with saturated aqueous NH₄PF₆. The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide an orange film (7.5 mg, 74%): IR (thin film) y (cm⁻¹) 2961, 2877, 1686, 1615, 1482, 1414, 1367, 1298, 1204, 1142, 1028, 838, 557. ¹H NMR (MeCN-*d*₃) δ (ppm) 8.46 (d, J = 2.1 Hz, 6 H), 7.55 (d, J = 5.9 Hz, 6 H), 7.39 (dd, J = 1.6, 5.9 Hz, 6 H), 1.41 (s, 54 H). ¹³C NMR (MeCN-*d*₃) δ (ppm) 163.4, 157.9, 151.8, 125.6, 122.4, 36.3, 30.5. HRMS (ESI) calcd for RuC₅₄H₇₂N₆ (M-2PF₆)²⁺ 453.3435, found (M-2PF₆)²⁺ 453.2434.

Compound 3h. Ru(tBu₂bpy)₂Cl₂ (6 mg, 0.008 mmol) in EtOH (800 μ L) was treated with 1.1 equivalents of a solution of 2,2'-bipyridine (bpy) in EtOH (100 mM) and refluxed for 6 hours. The resulting solution was concentrated *in vacuo* and purified by column chromatography on silica gel using mixtures of MeCN and 100:3:1

MeCN:H₂O:KNO₃ (sat. aq.) as eluent. The major colored fractions were collected and concentrated to dryness, then redissolved in 8:1 H₂O:EtOH and precipitated as with saturated aqueous NH₄PF₆. The compound was then centrifuged and washed extensively with water. The purified product was then redissolved in MeCN and tared to provide an orange film (5.4 mg, 59%): IR (thin film) y (cm⁻¹) 2972, 1356, 1028, 839, 557. ¹H NMR (MeCN-*d*₃) δ (ppm) 8.46-8.50 (m, 6 H), 8.03 (td, J = 1.2, 7.9, 9.3 Hz, 2 H), 7.69 (d, J = 5.3 Hz, 2 H), 7.57 (dd, J = 4.7, 5.9 Hz, 4 H), 7.36-7.41 (m, 6 H), 1.41 (s, 18 H), 1.40 (s, 18 H). ¹³C NMR (MeCN-*d*₃) δ (ppm) 163.6, 158.2, 157.8, 152.5, 152.0, 151.8, 138.5, 128.5, 125.6, 125.2, 122.5, 36.4, 30.5. HRMS (ESI) calcd for RuC₄₆H₅₆N₆ (M-2PF₆)²⁺ 397.1799, found (M-2PF₆)²⁺ 397.1804.

Compound 3i. Ru(tBu₂bpy)(DMSO)₂Cl₂ (600 mg, 1.01 mmol) and tBu₂bpy (270 mg, 1.01 mmol) were dissolved in dry DMF (100 mL) and heated to reflux. The orange solution became dark purple. After six

hours, the reaction mixture was cooled to room temperature and concentrated to dryness. The complex was purified on a neutral aluminum oxide plug column (10 cm) with CH₂Cl₂, then EtOAc to elute the purple product. The dicationic impurity [Ru(tBu₂bpy)₃]Cl₂ stuck to the top of the column. The complex was concentrated to give a purple solid (423 mg, 61%). Analytical data for this compound were consistent with literature values (C. Viala, C. Coudret, *Inorg. Chimica Acta* **2006**, *359*, 984-989).

3.) Bidentate Ligands for Library Synthesis

Monoanionic ligands (deprotonated with LiOH during library synthesis):

Neutral ligands:

4.) Cytotoxicity Data for Library Members

Cy	Cytotoxicities of library members in HeLa cells at approx. 30 µM concentration (% cell survival)																	
					-		N	Aona	anion	ic Lig	gand			-				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	a	87	85	87	83	78	76	76	96	78	93	89	96	65	76	62	66	75
	b	93	91	135	70	72	78	34	100	82	86	89	107	83	79	86	100	74
	с	92	80	102	77	86	81	65	79	77	96	94	92	83	81	85	93	79
	d	87	91	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	e	101	91	83	88	106	68	51	84	72	79	88	91	71	81	88	77	97
	f	78	68	80	79	80	52	31	59	58	65	60	61	58	50	84	63	53
	g	82	85	65	66	74	51	18	84	74	89	82	42	80	63	88	71	1
	h	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х
	i	87	94	79	86	95	75	66	96	73	89	87	86	80	72	98	84	85
	j	42	26	Х	Χ	Х	Х	Χ	Х	Х	Х	Χ	Х	Χ	Χ	Х	Χ	Х
	k	67	75	75	71	72	72	74	96	86	87	77	88	74	76	71	81	100
	l	86	91	69	75	64	88	76	89	79	80	85	87	78	79	68	72	97
	m	94	75	50	56	88	60	61	62	87	63	58	62	48	77	83	43	64
	n	84	81	86	69	92	77	78	79	86	97	83	83	78	77	79	70	80
igand	0	80	83	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ
	р	105	99	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
	q	59	65	Х	Χ	Х	Х	Χ	Х	Х	Х	Χ	Х	Χ	Χ	Х	Х	Χ
al l	r	98	93	74	72	85	94	24	81	89	101	87	81	95	86	86	81	88
utr	S	82	87	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ
Ne	t	84	96	84	71	85	97	51	91	89	110	87	95	92	78	83	100	91
	u	86	87	118	64	81	97	87	92	94	116	81	83	81	88	81	89	78
	v	98	87	105	78	92	96	83	97	90	134	92	85	82	89	79	81	76
	w	86	80	92	76	95	93	78	94	87	97	89	75	92	87	99	83	73
	X	89	87	85	70	93	102	81	91	80	108	83	88	98	84	89	84	90
	у	99	99	73	74	89	84	70	87	91	107	86	82	92	93	83	84	108
	Z	93	91	91	82	97	94	78	96	92	123	81	86	93	84	87	98	113
	aa	87	85	85	66	81	98	70	99	92	118	94	98	90	75	78	87	88
	bb	92	92	90	83	105	86	74	110	86	117	84	101	90	80	92	89	73
	сс	94	96	95	81	99	87	57	103	90	76	92	92	79	69	85	77	111
	dd	88	89	87	76	108	95	69	88	96	90	75	96	80	76	92	88	131
	ee	83	74	67	71	103	87	83	106	77	78	64	81	83	71	82	87	97
	ff	80	76	66	89	73	98	84	107	75	87	75	82	73	68	82	84	99
	gg	84	94	70	75	89	118	80	100	91	95	74	93	80	65	82	81	107
	hh	96	80	68	80	100	111	92	105	85	99	82	95	83	80	83	85	101
	ii	99	104	68	78	87	106	85	125	85	83	79	91	91	80	83	83	88
	jj	95	98	71	70	97	96	77	123	101	97	76	80	90	85	83	90	96

kk	76	91	79	71	97	59	70	86	68	101	84	64	86	67	61	91	67
11	31	31	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
mm	126	110	92	98	108	92	64	134	110	98	89	77	99	75	105	114	108
nn	95	68	78	69	75	72	60	82	80	96	79	71	79	62	81	91	66

X = Compounds not synthesized due to solubility problems with complexes bearing the indicated ligands.

Visual distribution of cytotoxicity data for the ruthenium complex library (560 data points):

5.) Validation of Library Quality

An aliquot of 65 randomly chosen complexes of the 560-membered library (11.6% of library) in DMF:ethylene glycol (10 mM) were diluted to 100 μ M in MeCN and injected on an Agilent 1200 Series HPLC system with an Agilent 6120 Quadrupole MS. An analytical Nucleodur C8 Gravity column (Macherey-Nagel) was equilibrated to 5% MeCN/95% H₂O with 0.5% formic acid at 0.3 mL/min. A 5 μ L solution of the compound was injected and the MeCN was increased to 95% over 20 minutes. The main peak in the UV chromatogram (254 nm) was then analyzed for its ionized fragments (ESI-POS, 400-900 m/z). The structures of 65 randomly chosen library members are shown below along with their UV-chromatograms and a corresponding mass spectrum of the major peak:

 $[M-C1]^+ = 570.0$

 $[M-C1]^+ = 682.2$

 $[M-C1]^+ = 639.0$

 $[M-C1]^+ = 534.0$

 $[M-C1]^+ = 638.1$

 $[M-C1]^+ = 682.0$

 $[M-C1]^+ = 578.0$

m/z

 $[M-C1]^+ = 666.0$

$$[M-C1]^+ = 640.0$$

 $[M-C1]^+ = 655.1$

 $[M-C1]^+ = 638.0$

 $[M-C1]^+ = 586.08$

 $[M-C1]^+ = 564.1$

 $[M-C1]^+ = 600.1$

 $[M-C1]^+ = 606.0$

 $[M-C1]^+ = 578.0$

 $[M-C1]^+ = 586.1$

 $[M-C1]^+ = 625.1$

 $[M-C1]^+ = 535.0$

 $[M-C1]^+ = 526.1$

 $[M-C1]^+ = 517.1$

 $[M-C1]^+ = 572.1$

 $[M-C1]^+ = 570.1$

 $[M-C1]^+ = 480.1$

 $[M-C1]^+ = 465.1$

 $[M-C1]^+ = 542.1$

 $[M-C1]^+ = 576.0$

 $[M-C1]^+ = 489.1$

 $[M-C1]^+ = 513.1$

 $[M-C1]^+ = 489.1$

 $[M-C1]^+ = 536.1$

$$[M-C1]^+ = 450.1$$

 $[M-C1]^+ = 536.1$

 $[M-C1]^+ = 555.1$

 $[M-C1]^+ = 567.1$

 $[M-C1]^+ = 505.0$

 $[M-C1]^+ = 584.1$

 $[M-C1]^+ = 549.2$

 $[M-C1]^+ = 670.2$

 $[M-C1]^+ = 587.1$

 $[M-C1]^+ = 623.1$

 $[M-C1]^+ = 601.1$

 $[M-C1]^+ = 569.1$

 $[M-C1]^+ = 616.1$

 $[M-C1]^+ = 612.1$

 $[M-C1]^+ = 554.0$

0

400

450

500

550

600

650

700 m/z

 $[M-C1]^+ = 576.1$

 $[M-C1]^+ = 514.1$

 $[M-C1]^+ = 500.1$

S74

 $[M-C1]^+ = 652.1$

 $[M-C1]^+ = 554.1$

 $[M-C1]^+ = 644.1$

S77

 $[M-C1]^+ = 568.1$

 $[M-C1]^+ = 589.1$

