Supporting Information

PdCl₂-promoted reactions of diaryl-substituted methylenecyclopropanes

Ming-Hui Qi,^a Li-Xiong Shao,^b* and Min Shi^{a,c}*

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

^bCollege of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou 325035, Zhejiang Province, P. R. China.

^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China.

CONTENTS

1	General Remarks	•••••	S-2	
2	Optimization for the reaction of 1a	••••••	S-3	
	with Pd source			
2	Tables for the Suzuki-Miyaura	••••••	S-4	
	Coupling Reaction			
3	General Reaction Procedure	•••••	S-5	
4	Spectroscopic Data	•••••	S-7	

General Remarks. ¹H NMR spectra and ¹³C NMR spectra were recorded on a Varian Mercury vx-300/400 MHz spectrometer for solution in CDCl₃ with tetramethylsilane (TMS) as an internal standard. Infrared spectra were measured on a PERKIN-ELMER 983 spectrometer. Mass spectra were recorded with a HP-5989 instrument. Satisfactory CHN microanalyses were measured with a Carlo-Erba 1106 analyzer. Commercially obtained reagents were used without further purification. Organic solvents used were dried by standard methods when necessary. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

R ¹	\mathbf{R}^2	solvent		CI_Ph	Ph
Ĺ	+ PdC	I ₂ Ln temp.	► ^{Ci} /—F Ph Ph	Pd Pd− ┐℃ źź	CI
1a:	$: R^1 = R^2 = F$	Ph		2a	
Entry	^a Ln	Solvent	Temp.	Time/h	Yield/% ^b
1	none	toluene	rt	24	40
2	none	DMSO	rt	35	N.R.
3	none	CH_2CI_2	rt	40	41
4	none	THF	rt	24	58
5	none	CH ₃ CN	rt	48	30
6	none	benzene	rt	40	47
7	none	DCE	rt	40	39
8	none	H ₂ O	rt	24	N.R.
9	none	THF	50 °C	24	74
10	none	THF	reflux	24	74
11	none	dioxane	50 °C	24	70
12	(CH ₃ CN) ₂	THF	50 °C	24	57
13	(PhCN) ₂	THF	50 °C	24	52
14	$(PPh_3)_2$	THF	50 °C	24	N.R.
15	dppe	THF	50 °C	24	28

Table SI-1 Optimization for the reaction of MCP 1a with Pd source

^{*a*} All reactions were carried out using MCP **1a** (0.3 mmol), Pd source (0.33 mmol) and solvent (1.0 mL) at the listed temperature. ^{*b*} Isolated yields. The catalytic studies of complex **2a** in Suzuki-Miyaura coupling reaction were also carried out and the two tables below showed the results:

-{_}-	Br + B(OH)	2 a , base sol., rt	
10a	11a		12a
entry ^a	base	sol.	yields/% ^b
1	BuOK	BuOH	17
2	BuOK	THF	19
3	BuOK	DCE	N.R.
4	BuOK	CH₃CN	N.R.
5	BuOK	PrOH	81
6	KF	PrOH	68
7	Cs_2CO_3	PrOH	40
8	КОН	PrOH	61
9	K ₂ CO ₃	PrOH	43
10	K₃PO₄ [:] 3H₂O	PrOH	63

Table SI-2 Suzuki-Miyaura Coupling Reaction Using 2a as Catalyst.

^a Reaction conditions: **10a** (0.5 mmol), **11a** (0.6 mmol), **2a** [10 mg ([Pd]: 2.5 mol%)], base (1.2 mmol), sol. (2.0 mL), rt , 24 h. ^b Isolated yields.

Table SI-3 Suzuki-Miyaura Coupling Reactions of Arylbromides with Arylboronic Acids Using 2a as Catalyst.

	$-Br + R^2 - B(O)$	H) ₂ <u>²a, ^tBuOK</u> ⁱ PrOH, rt R ¹	
10	11		
entry ^a	10 (R ¹)	11 (R ²)	yields/% ^b
1	10b (H)	11b (4-Me)	12a , 75
2	10b	11c (3,5-Me ₂)	12b , 88
3	10a (4-Me)	11c	12c , 96
4	10c (2-Me)	11a (H)	12d , 61
5	10d (3,5-Me ₂)	11a	12b , 60
6	10c	11c	12e , 68
7	10e (4-Cl)	11c	12 f, 92

^a Reaction conditions: **10** (0.5 mmol), **11** (0.6 mmol), **2a** [10 mg ([Pd]: 2.5 mol%)], ^tBuOK (1.2 mmol), ⁱPrOH (2.0 mL), rt, 24 h. ^b Isolated yields. General procedure for the reaction of MCPs 1 with $PdCl_2$ in THF. Under an argon atmosphere, a mixture of MCPs 1 (0.30 mmol) and $PdCl_2$ (0.33 mmol) was stirred in anhydrous THF (1.0 mL) at 50 °C for 24 h. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel to give complex 2.

Procedure for the reaction of MCP 1a with PdBr₂ in THF. Under an argon atmosphere, a mixture of MCP **1a** (0.30 mmol) and PdBr₂ (0.33 mmol) was stirred in anhydrous THF (1.0 mL) at 60 °C for 24 h. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel to give complex **3a**.

General procedure for the reaction of MCPs 1 with PdCl₂ in DMAc. Under an argon atmosphere, a mixture of MCPs 1 (0.30 mmol) and PdCl₂ (0.33 mmol) was stirred in anhydrous DMAc (1.0 mL) at 50 °C for 24 h. The reaction solution was diluted with EtOAc, washed with saturated brine, dried over anhydrous Na₂SO₄, and then purified by flash column chromatography on silica gel to give complexes 2 and 4.

Procedure for the reaction of MCP 1e with $PdCl_2$ in THF in the presence of NaBr. A mixture of MCP 1e (0.30 mmol), $PdCl_2$ (0.33 mmol) and NaBr (0.9 mmol) was stirred in anhydrous THF (1.0 mL) at 50 °C for 12 h. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel to give complex 3b.

Procedure for the reaction of MCP 1a with PdCl₂ in DMF in the presence of H₂O. Under an argon atmosphere, a mixture of MCP 1a (0.30 mmol), PdCl₂ (0.33 mmol) and H₂O (0.6 mmol to 3 mmol) was stirred in anhydrous DMF (1.0 mL) at room temperature for 24 h. The reaction solution was diluted with EtOAc, washed with saturated brine, dried over anhydrous Na₂SO₄, and then purified by flash column chromatography on silica gel to give complexes 2 and/or 5 and/or 6.

Procedure for the formation of complex 7. Under an argon atmosphere, a mixture of complex **2a** (0.05 mmol), IPrHCl (0.11 mmol) and ^{*t*}BuOK (0.25 mmol) was stirred in anhydrous THF (1.0 mL) at room temperature for 12 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give complex **7**.

General procedure for Suzuki-Miyaura coupling reaction. Under an argon atmosphere, boronic acid **11** (0.6 mmol), ^{*i*}BuOK (1.2 mmol), complex **2a** (10 mg, 2.5 mol%), ^{*i*}PrOH (2.0

mL) and bromide **10** (0.5 mmol) was successively added into a Schlenk reaction tube. The mixture was stirred at room temperature for 24 h. Then the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give products **12**.

Product **2a**. A yellow solid. Mp: 220 °C (decomposed). ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.51 (s, 2H), 4.04 (d, 2H, *J* = 11.1 Hz), 4.16 (d, 2H, *J* = 4.5 Hz), 4.29 (d, 2H, *J* = 11.1 Hz), 7.23-7.39 (m, 16H, Ar), 7.48 (d, 4H, *J* = 7.2 Hz, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 43.0, 64.1, 99.2, 115.7, 127.7, 127.9, 128.5, 128.7, 130.0, 130.7, 140.0, 140.1. IR (CH₂Cl₂): v 3056, 2925, 1490, 1443, 1260, 1077, 760 cm⁻¹. MS (MALDI) *m/z*: 654 (M⁺-¹⁰²Pd). Anal. Calcd. For C₃₂H₂₈Cl₄Pd₂ requires: C, 50.10 %; H, 3.68%; Found: C, 49.97 %; H, 3.84%.

Product **2b**. A yellow solid. Mp: 196 °C (decomposed). ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.26 (s, 6H), 2.30 (s, 6H), 3.47 (s, 2H), 4.03 (d, 2H, J = 10.8 Hz), 4.10 (d, 2H, J = 6.6 Hz), 4.33 (d, 2H, J = 10.8 Hz), 7.04 (d, 8H, J = 7.5 Hz, Ar), 7.24 (d, 4H, J = 7.8 Hz, Ar), 7.34 (d, 4H, J = 8.1 Hz, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 21.26, 21.31, 43.1, 63.6, 99.5, 115.1, 128.5, 129.26, 129.34, 129.9, 130.7, 137.2, 137.3, 138.4. IR (CH₂Cl₂): v 3015, 2922, 2844, 1609,

1508, 1442, 1260, 1185, 1021, 818 cm⁻¹. MS (MALDI) *m/z*: 710 (M⁺-¹⁰²Pd). Anal. Calcd. For C₃₆H₃₆Cl₄Pd₂ requires: C, 52.52 %; H, 4.41%; Found: C, 52.82 %; H, 4.51%.

Product **2c**. A yellow solid. Mp: 202 °C (decomposed). ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.48 (s, 2H), 4.03 (d, 2H, *J* = 11.4 Hz), 4.17 (d, 2H, *J* = 9.0 Hz), 4.25 (d, 2H, *J* = 11.4 Hz), 6.94-7.00 (m, 8H, Ar), 7.30-7.35 (m, 4H, Ar), 7.41-7.46 (m, 4H, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 42.7, 64.2, 96.8, 115.1 (d, *J*_{C-F} = 21.9 Hz), 115.9 (d, *J*_{C-F} = 18.0 Hz), 116.0, 131.6, 132.5 (d, *J*_{C-F} = 7.9 Hz), 135.68, 135.71 (d, *J*_{C-F} = 8.2 Hz), 162.1 (d, *J*_{C-F} = 248.0 Hz), 162.4 (d, *J*_{C-F} = 249.1 Hz). IR (CH₂Cl₂): v 2950, 2926, 1601, 1505, 1235, 1160, 1099, 1015, 837 cm⁻¹. MS (MALDI) *m/z*: 726 (M⁺-¹⁰²Pd). HRMS (MALDI) Calcd. For C₃₂H₂₄F₄Cl₄¹⁰²Pd⁺¹ requires: 725.9619; Found: 725.9599.

Product **2d**. A yellow solid. Mp: 156-158 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.46 (s, 2H), 3.78 (s, 6H, OMe), 3.82 (s, 6H, OMe), 4.05 (d, 2H, *J* = 12.3 Hz), 4.11 (d, 2H, *J* = 11.7 Hz), 4.36 (d, 2H, *J* = 10.8 Hz), 6.76 (d, 4H, *J* = 8.1 Hz, Ar), 6.79 (d, 4H, *J* = 8.1 Hz, Ar), 7.29 (d, 4H, *J* = 8.1 Hz, Ar), 7.38 (d, 4H, *J* = 8.1 Hz, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 43.2, 55.2, 60.4, 63.2, 99.3, 113.2, 113.9, 114.0, 114.6, 131.3, 131.4, 132.2, 132.4, 132.6, 159.2, 159.5. IR (CH₂Cl₂): v 3002, 2950, 2929, 2387, 1604, 1508, 1295, 1252, 1176, 1034, 833 cm⁻¹. MS (MALDI) *m/z*: 774 (M⁺-¹⁰²Pd). HRMS (MALDI) Calcd. For C₃₆H₃₆O₄Cl₄¹⁰²Pd⁺¹ requires: 774.0418; Found: 774.0425.

Product **2e**. A yellow solid. Mp: 212 °C (decomposed).¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.50 (s, 2H), 4.01 (d, 2H, J = 11.1 Hz), 4.19 (d, 2H, J = 12.3 Hz), 4.23 (d, 2H, J = 11.4 Hz), 7.23-7.27 (m, 12H), 7.39 (d, 4H, J = 8.7 Hz, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 42.6, 64.5, 96.4, 115.9, 128.3, 129.1, 129.2, 131.1, 131.9, 134.2, 134.7, 138.0. IR (CH₂Cl₂): v 2950, 2925, 2854, 1718, 1588, 1488, 1398, 1259, 1092, 1014, 829 cm⁻¹. MS (MALDI) *m/z*: 790 (M⁺-¹⁰²Pd). HRMS (MALDI) Calcd. For C₃₂H₂₄Cl₈¹⁰²Pd⁺¹ requires: 789.8437; Found: 789.8445.

Product **2f**. A yellow solid. Mp: 197 °C (decomposed). (*Z*, *Z*- or *Z*, *E*-isomer) ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.50 (s, 2H), 4.03 (d, 2H, *J* = 11.1 Hz), 4.17 (d, 2H, *J* = 4.5 Hz), 4.26 (d, 2H, *J* = 11.1 Hz), 7.22-7.34 (m, 14H, Ar), 7.40-7.46 (m, 4H, Ar). (*Z*, *E*- or *Z*, *Z*-isomer) ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.50 (s, 2H), 4.03 (d, 2H, *J* = 11.1 Hz), 4.17 (d, 2H, *J* = 4.5 Hz), 4.26 (d, 2H, *J* = 11.1 Hz), 7.22-7.34 (m, 14H, Ar), 7.40-7.46 (m, 4H, Ar). (*Z*, *Z*- or *Z*, *E*-isomer) ¹³C NMR (CDCl₃, 75 MHz) δ 42.7, 64.2, 97.8, 115.7, 128.0, 128.7, 129.9, 131.1, 133.9, 134.4, 138.4, 139.5. (*Z*, *E*- or *Z*, *Z*-isomer) ¹³C NMR (CDCl₃, 75 MHz) δ 42.8, 64.4, 97.8, 115.8, 128.2, 128.8, 130.6, 131.9, 133.9, 134.4, 138.5, 139.6. IR (CH₂Cl₂): v 3058, 3006, 2950, 2926, 2854, 1908, 1782, 1589, 1487, 1445, 1260, 1216, 1092, 1014, 828 cm⁻¹. MS (MALDI) *m*/*z*: 722 (M⁺-¹⁰²Pd). HRMS (MALDI) Calcd. For C₃₂H₂₆Cl₆¹⁰²Pd⁺¹ requires: 721.9216; Found: 721.9219.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Product **3a**. A yellow solid. Mp: 186 °C (decomposed). ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.45 (s, 2H), 3.92 (d, 2H, J = 8.4 Hz), 4.16 (d, 2H, J = 5.4 Hz), 4.22 (d, 2H, J = 9.3 Hz), 7.22-7.41 (m, 16H, Ar), 7.48 (d, 4H, J = 6.9 Hz, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 30.3, 64.5, 64.6, 101.7, 115.4, 127.8, 127.9, 128.6, 128.7, 130.5, 131.3, 139.9, 140.1. IR (CH₂Cl₂): v 3054, 2954, 2925, 2853, 1737, 1489, 1443, 1338, 1213, 761 cm⁻¹. MS (MALDI) *m/z*: 834 (M⁺-¹⁰⁶Pd).

Product **3b**. A yellow solid. Mp: 194 °C (decomposed). ¹H NMR (CDCl₃, 400 MHz, TMS) δ 3.43 (d, 2H, *J* = 18.0 Hz), 3.90 (d, 2H, *J* = 10.0 Hz), 4.12-4.22 (m, 4H), 7.13-7.30 (m, 12H, Ar), 7.39 (d, 4H, *J* = 7.6 Hz, Ar). ¹³C NMR (CDCl₃, 100 MHz) δ 29.7, 64.7, 64.9, 98.9, 115.8, 128.2, 129.2, 131.6, 132.5, 134.3, 134.9, 138.0, 138.2. IR (CH₂Cl₂): v 3048, 1908, 1588, 1488, 1398, 1275, 1262, 1213, 1093, 1013, 828 cm⁻¹. MS (ESI) *m/z*: 1076 (M⁺+H). HRMS (ESI) Calcd. For C₃₂H₂₅Br₄Cl₄Pd₂ requires: 1076.5514; Found: 1076.4431.

Product **4a**. A yellow solid. Mp: 213 °C (decomposed). ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.04 (s, 3H), 2.06 (s, 3H), 3.50 (s, 2H), 4.20 (d, 2H, J = 7.5 Hz), 4.72 (s, 4H), 7.21-7.36 (m, 16H, Ar), 7.46 (d, 4H, J = 7.2 Hz, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 20.7, 29.6, 63.1, 98.9, 116.3, 127.7, 127.8, 128.3, 128.6, 130.1, 130.6, 140.2, 140.5, 170.1. IR (CH₂Cl₂): v 3056, 3022, 2926, 1745, 1677, 1597, 1490, 1444, 1371, 1222, 1033, 760 cm⁻¹. MS (ESI) *m/z*: 833 (M+Na)⁺. HRMS (ESI) Calcd. For C₃₆H₃₆N₂O₂NaCl₂Pd₂ (M+Na)⁺ requires: 833.0121; Found: 833.0180.

Product **4b**. A yellow solid. Mp: 84-86 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.04 (s, 3H), 2.06 (s, 3H), 2.26 (s, 6H), 2.30 (s, 6H), 3.46 (s, 2H), 4.14 (d, 2H, J = 9.3 Hz), 4.71 (s, 4H), 7.02 (d, 4H, J = 6.9 Hz, Ar), 7.05 (d, 4H, J = 7.8 Hz, Ar), 7.21 (d, 4H, J = 6.9 Hz, Ar), 7.32 (d, 4H, J = 7.8 Hz, Ar). IR (CH₂Cl₂): v 2949, 2925, 2855, 1745, 1459, 1376, 1222, 1028, 818, 772 cm⁻¹. MS (ESI) *m/z*: 889 (M⁺+Na). HRMS (ESI) Calcd. For C₄₀H₄₄N₂O₂NaCl₂Pd₂ (M⁺+Na) requires: 889.0747; Found: 889.0803.

Product **4c**. A yellow solid. Mp: 135-138 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.06 (s, 3H), 2.07 (s, 3H), 3.45 (s, 2H), 4.21 (d, 2H, J = 11.7 Hz), 4.68 (s, 4H), 6.92-6.97 (m, 8H, Ar), 7.27-7.44 (m, 8H, Ar). IR (CH₂Cl₂): v 2919, 1738, 1494, 1364, 1217, 1094, 829 cm⁻¹. MS (ESI) *m/z*: 905 (M⁺+Na). HRMS (ESI) Calcd. For C₃₆H₃₂N₂O₂NaF₄Cl₂Pd₂ (M⁺+Na) requires: 904.9744; Found: 904.9763.

Product **4d**. A yellow solid. Mp: 85-87 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.05 (s, 3H), 2.07 (s, 3H), 3.47 (s, 2H), 4.22 (d, 2H, J = 11.4 Hz), 4.62-4.74 (m, 4H), 7.17-7.26 (m, 12H, Ar), 7.37 (d, 2H, J = 8.4 Hz, Ar), 7.40 (d, 2H, J = 6.6 Hz, Ar). IR (CH₂Cl₂): v 2950, 2926, 1744, 1589, 1490, 1376, 1221, 1092, 1015, 828 cm⁻¹. MS (ESI) *m/z*: 969 (M⁺+Na). HRMS

(ESI) Calcd. For $C_{36}H_{32}N_2O_2NaCl_6Pd_2$ (M⁺+ Na) requires: 968.8562; Found: 968.8572.

Product **4e**. A yellow solid. Mp: 83-85 °C. (*Z*, *Z*- or *Z*, *E*-isomer) ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.06 (s, 3H), 2.08 (s, 3H), 3.48 (s, 2H), 4.21 (d, 2H, *J* = 9.0 Hz), 4.69 (s, 4H), 7.20-7.44 (m, 18H, Ar). (*Z*, *E*- or *Z*, *Z*-isomer) ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.06 (s, 3H), 2.08 (s, 3H), 3.48 (s, 2H), 4.21 (d, 2H, *J* = 9.0 Hz), 4.69 (s, 4H), 7.20-7.44 (m, 18H, Ar).. IR (CH₂Cl₂): v 2950, 2926, 2841, 1745, 1488, 1371, 1221, 1092, 829, 760 cm⁻¹. MS (ESI) *m/z*: 901 (M⁺+Na). HRMS (ESI) Calcd. For C₃₆H₃₄N₂O₂NaCl₄Pd₂ (M⁺+Na) requires: 900.9342; Found: 900.9438.

Product 5. A yellow solid. Mp: 169-171 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.53 (s, 2H), 4.22 (d, 2H, *J* = 6.3 Hz), 4.81 (s, 4H), 7.23-7.35 (m, 16H, Ar), 7.47 (d, 4H, *J* = 7.5 Hz, Ar),

8.01 (s, 1H), 8.03 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 22.7, 63.4, 99.5, 115.1, 127.9, 128.0, 128.5, 128.7, 130.1, 130.6, 140.1, 140.3, 159.9. IR (CH₂Cl₂): v 3052, 2926, 2854, 1727, 1491, 1443, 1147, 925, 759 cm⁻¹. MS (ESI) *m/z*: 805 (M⁺+Na). HRMS (ESI) Calcd. For C₃₄H₃₂N₂O₂NaCl₂Pd₂ (M⁺+Na) requires: 804.9808; Found: 804.9826.

Product **6**. A yellow solid. Mp: 169 °C (decomposed). ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.47 (s, 2H), 4.18 (s, 4H), 4.28 (s, 2H), 7.14-7.22 (m, 12H, Ar), 7.28 (d, 4H, *J* = 6.9 Hz, Ar), 7.41 (d, 4H, *J* = 6.6 Hz, Ar), 7.94 (s, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 62.2, 97.9, 127.6, 127.9, 128.1, 128.6, 129.9, 130.3, 140.6, 140.7. IR (CH₂Cl₂): v 3446, 2924, 1705, 1490, 1443, 1362, 1220, 1077, 1015, 974, 763 cm⁻¹. MS (ESI) *m/z*:701 (M⁺-Cl). HRMS (ESI) Calcd. For C₃₂H₃₀O₂Cl¹¹⁰Pd₂ (M⁺-Cl) requires: 701.0037; Found: 701.0062.

Product 7. A yellow solid. Mp: 230 °C (decomposed). ¹H NMR (CDCl₃, 300 MHz, TMS) δ 0.93 (d, 6H, *J* = 3.9 Hz), 0.95 (d, 6H, *J* = 3.9 Hz), 1.21 (d, 6H, *J* = 6.6 Hz), 1.46 (d, 6H, *J* = 6.6 Hz), 2.23 (s, 1H), 2.27 (d, 1H, *J* = 10.5 Hz), 2.68-2.78 (m, 2H), 2.79 (s, 1H), 3.07-3.16 (m, 2H), 3.74 (d, 1H, *J* = 9.9 Hz), 6.92-7.13 (m, 10H, Ar), 7.19 (s, 2H), 7.31-7.46 (m, 6H, Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 21.5, 22.9, 25.6, 27.0, 28.3, 28.7, 42.8, 48.5, 59.8, 106.7, 116.5, 123.6, 123.9, 124.1, 126.3, 126.8, 127.3, 128.2, 129.7, 130.2, 130.8, 135.8, 140.2, 140.9, 145.9, 146.0, 184.2. IR (CH₂Cl₂): v 3056, 2964, 2928, 2868, 1596, 1464, 1444, 1404, 1333, 1264, 944, 801 cm⁻¹. MS (ESI) *m/z*: 735 (M⁺). HRMS (ESI) Calcd. For C₄₃H₅₀N₂³⁷Cl¹⁰⁴Pd requires: 735.2673; Found: 735.2679.

Product **9**. A yellow solid. Mp: 196 °C (decomposed). ¹H NMR (CDCl₃, 400 MHz, TMS) δ 3.50 (s, 2H), 4.02 (d, 2H, J = 10.4 Hz), 4.20 (s, 2H), 4.31 (d, 2H, J = 10.8 Hz), 7.22-7.33 (m, 12H, Ar), 7.39 (d, 4H, J = 7.2 Hz, Ar), 7.48 (d, 4H, J = 6.4 Hz, Ar). ¹³C NMR (CDCl₃, 100 MHz) δ 43.0, 64.8, 64.9, 102.3, 115.4, 127.8, 127.9, 128.0, 128.6, 128.7, 130.6, 131.3, 139.9, 140.2. IR (CH₂Cl₂): v 3055, 2926, 1948, 1893, 1673, 1596, 1489, 1443, 1339, 1262, 1158, 1078, 1033, 1019, 923 cm⁻¹. MS (ESI) *m/z*: 818 (M⁺-Cl+H). HRMS (ESI) Calcd. For C₃₂H₂₉Br₂ClPd₂ requires: 817.8394; Found: 817.9464.

Product **12a**.¹ A white solid. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.36 (s, 3H), 7.21 (d, 2H, *J* = 7.8 Hz, Ar), 7.26-7.33 (m, 1H, Ar), 7.39 (t, 2H, *J* = 7.5 Hz, Ar), 7.47 (d, 2H, *J* = 7.8 Hz, Ar), 7.54-7.57 (m, 2H, Ar).

⁽¹⁾ Shi, M.; Qian, H.-X. Tetrahedron 2005, 61, 4949-4955.

Product **12b**.¹ A white solid. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.34 (s, 6H), 6.96 (s, 1H, Ar), 7.19 (s, 2H, Ar), 7.25-7.31 (m, 1H, Ar), 7.35-7.40 (m, 2H, Ar), 7.53-7.56 (m, 2H, Ar).

Product 12c.² A white solid. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.35 (s, 9H), 6.95 (s, 1H, Ar), 7.19-7.22 (m, 4H, Ar), 7.46 (d, 2H, J = 8.1 Hz, Ar).

⁽²⁾ Voegtle, F.; Steinhagen, G. Chem. Ber. 1978, 111, 205-212.

Product **12d**.¹ A white solid. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.27 (s, 3H), 7.22-7.45 (m, 8H, Ar), 7.58 (d, 1H, J = 7.8 Hz, Ar).

Product **12e**.³ A white solid. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.26 (s, 3H), 2.34 (s, 6H), 6.93 (s, 2H, Ar), 6.97 (s, 1H, Ar), 7.20-7.23 (m, 4H, Ar).

⁽³⁾ So, C.-M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008, 47, 8059-8063.

Product **12f**.⁴ A white solid. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.34 (s, 6H), 6.97 (s, 1H, Ar), 7.13 (s, 2H, Ar), 7.33 (d, 2H, J = 8.4 Hz, Ar), 7.45 (d, 2H, J = 8.4 Hz, Ar).

⁽⁴⁾ Gregory, N.L. J. Chem. Soc. B 1968, 295-299.