Supplementary Information

Reversible single-crystal to single-crystal transformations in a Hg(II) derivative. 1D-polymeric chain \Rightarrow 2D-networking as a function of temperature

Shaikh M. Mobin,^{*a,b,c*} Ashwini K. Srivastava,*^{*c*} Pradeep Mathur,*^{*a,b*} and Goutam Kumar Lahiri,*^{*a,b*}

^{*a*}National Single Crystal X-ray Diffraction Facility and ^{*b*}Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India

^cDepartment of Chemistry, University of Mumbai, Vidyanagari, Mumbai 400098, India

Bond lengths (Å)	1(X=Cl)		1(X=Cl)
		4	(Regenerated)
$\frac{\text{Hg(1)-N(1)}}{\text{Hg(1)}}$	2.220(3)	2.143(6)	<u>2.194(8)</u>
Hg(1)-X(1)	2.3629(10)	2.316(2)	2.353(3)
Hg(1)-X(2)#1	2 7050(10)	2.8408(19)	0.777(2)
$\frac{\text{Hg}(1)-X(2)}{\text{Hg}(1)-X(2)}$	2.7858(10)	2.885(2)	2.777(3)
$\frac{\text{Hg}(1)-X(3)}{\text{Hg}(2)-X(3)}$	2.4980(10)		2.492(3)
Hg(2)-N(2)	2.209(3)		2.21 <mark>2(8)</mark>
Hg(2)-X(4)	2.3798(10)	2.3300(18)	2.365(3)
Hg(2)-X(3)	2.7533(10)	2.3512(19)	2.743(3)
Hg(2)-X(2)#1	2.498 <mark>7</mark> (10)		2.49 <mark>0</mark> (3)
Hg(2)-X(2)		2.756(2)	
Hg(2)-X(3)#2		2.8575(19)	
Bond angles (°)			
N(1)-Hg(1)-X(1)	133.93(10)	157.48(17)	<u>133.7(3)</u>
N(1)-Hg(1)-X(3)	105.24(10)		105. <mark>2</mark> (3)
X(1)-Hg(1)-X(3)	119.16(4)		119.5 <mark>6</mark> (11)
N(1)-Hg(1)-X(2)	92.59(9)	97.00(17)	91.8(2)
N(1)-Hg(1)-X(2)#1		97.47(16)	
X(1)-Hg(1)-X(2)	96.43(4)	98.59(7)	96. <mark>59</mark> (10)
X(1)-Hg(1)-X(2)#1		101.28(7)	
X(2)#1-Hg(1)-X(2)		79.90(6)	
X(3)-Hg(1)-X(2)	93.17(3)		<mark>93.40(9)</mark>
N(2)-Hg(2)-X(4)	133.48(9)		133.2(2)
N(2)-Hg(2)-X(2)#1	107.32(9)		107. <mark>4</mark> (2)
X(4)-Hg(2)-X(2)#1	116.57(4)	94.71(7)	<mark>116.84(11)</mark>
N(2)-Hg(2)-X(3)	95.22(9)		95.1(2)
X(4)-Hg(2)-X(3)	95.87(4)	161.85(8)	95.73(9)
X(3)-Hg(2)-X(2)		102.61(7)	
X(2)#1-Hg(2)-X(3)	94.63(3)	94.04(6)	94.5 <mark>8</mark> (9)
Hg(2)#2-X(2)-Hg(1)	98.1 <mark>4</mark> (3)		<u>98.04(9)</u>
Hg(1)-X(3)-Hg(2)	96.37(3)		<u>96.40(9)</u>
Cl(4)-Hg(2)-Cl(3)#2		96.29(6)	
Cl(3)-Hg(2)-Cl(3)#2		87.97(6)	
Hg(2)-Cl(2)-Hg(1)#1		127.27(7)	
Hg(2)-Cl(2)-Hg(1)		117.13(7)	
Hg(1)#1-Cl(2)-Hg(1)		100.10(6)	
Hg(2)-Cl(3)-Hg(2)#2		92.03(6)	

Table S1 Selected bond lengths (Å) and angles (°) for 1, 4 and 1 (Regenerated)

Bond length (Å)/	2(X=Br)	3(X=I)
Hg(1)-N(1)	2.253(8)	2.303(7)
Hg(1)-X(1)	2.481 <mark>5</mark> (11)	2.6429(6)
Hg(1)-X(2)	2.9325(10)	3.0824(6)
Hg(1)-X(3)	2.5812(10)	2.7406(6)
Hg(2)-N(2)	2.246(8)	2.285(6)
Hg(2)-X(4)	2.4930(10)	2.6528(6)
Hg(2)-X(3)	2.9063(10)	3.0591(6)
Hg(2)-X(2)#1	2.5879(10)	2.7553(6)
Bond angle (°)		
N(1)-Hg(1)-X(1)	129.8(2)	127.15(19)
N(1)-Hg(1)-X(3)	105.8(2)	105.45(19)
X(1)-Hg(1)-X(3)	123.40(4)	124.82(2)
N(1)-Hg(1)-X(2)	91.2(2)	92.38(17)
X(1)-Hg(1)-X(2)	96.45(3)	100.88(2)
X(3)-Hg(1)-X(2)	91.70(4)	91.442(18)
N(2)-Hg(2)-X(4)	129.1(2)	126.52(16)
N(2)-Hg(2)-X(2)#1	107.7(2)	106.31(17)
X(4)-Hg(2)-X(2)#1	121.33(4)	124.02(2)
N(2)-Hg(2)-X(3)	94.64(19)	94.97(17)
X(4)-Hg(2)-X(3)	95.94(3)	99.554(19)
X(2)#1-Hg(2)-X(3)	92.4 <mark>8</mark> (3)	92.301(18)

Table S2 Selected bond lengths (Å) and angles (°) for 2 and 3 $\,$

Hg(2)#2-X(2)-Hg(1)	95.10(3)	93.438(18)
Hg(1)-X(3)-Hg(2)	94.52(3)	94.742(18)

D-HA	<i>d</i> (DH)	<i>d</i> (DA)	<i>d</i> (HA)	∠D-HA	
1					
O1-H01AO2(#1)	0.840(4)	2.665(6)	1.879(4)	153.14(30)	
O2-H02AO1(#1)	0.840(4)	2.665(6)	1.919(4)	145.59(29)	
C7-H7ACl4(#0)	0.990(4)	3.672(4)	2.768(1)	152.10(26)	
C14-H14BCl1(#2)	0.990(4)	3.640(4)	2.753(1)	149.37(25)	
C4-H4Cl1(#3)	0.950(5)	3.563(5)	2.817(1)	136.14(28)	
C11-H11Cl4(#4)	0.950(4)	3.551(4)	2.841(1)	132.43(26)	
C6-H6AO2(#5)	0.990(4)	3.708(6)	2.724(4)	172.23(26)	
C13-H13BO1(#4)	0.990(4)	3.646(5)	2.665(4)	170.94(25)	
C2-H2Cl3(#6)	0.950(4)	3.791(4)	2.864(1)	165.48(30)	
		4			
O1-H101Cl4 #1	0.840(9)	2.522(2)	3.288(9)	152.13(50)	
C4-H4Cl1#2	0.950(7)	2.964(2)	3.584(8)	124.08(50)	
C4-H4Cl3#2	0.950(7)	2.984(2)	3.815(8)	146.82(54)	
C7-H7BCl4#3	0.990(11)	2.825(2)	3.738(10)	153.53(62)	
1 Regenerated					
O1-H01AO2(#1)	0.840(10)	2.655(15)	2.091(10)	124.13(70)	
O2-H102O1(#1)	0.840(8)	2.655(14)	2.183(10)	115.5168)	
C7-H7ACl4(#0)	0.990(11)	3.684(11)	2.772(3)	153.33(64)	
C14-H14BCl1(#2)	0.990(11)	3.620(11)	2.718(3)	151.63(68)	
C4-H4Cl1(#3)	0.950(14)	3.575(16)	2.826(3)	136.46(89)	

Table S3Hydrogen bonding parameters (Å, °) for 1, 4 and 1 (Regenerated).

C11-H11Cl4(#4)	0.950(9)	3.557(10)	2.849(3)	132.19(60)
C6-H6AO2(#5)	0.990(10)	3.733(15)	2.749(10)	172.59(65)
C13-H13BO1(#4)	0.990(10)	3.651(13)	2.670(9)	171.12(66)
C2-H2Cl3(3) (#6)	0.950(11)	3.800(12)	2.871(2)	165.91(82)

Symmetry ;

For 1 and 1 Regenerated:

x, y, z (#0) -x+1,-y,-z(#1) x+1,+y,+z(#2) x,+y+1,+z(#3) x,+y-1,+z(#4) x-1,+y+1,+z(#5) -x+1,-y+1,-z+1 (#6) For 4: x+1,+y,+z(#1) x,+y-1,+z(#2) -x+1,-y+1,-z+2(#3)Short contacts for 1

2.6551 (50) O1 - O2_\$2

2.7021 (82) O1 - O1_\$1

2.6551 (50) O2 - O1_\$2

2.7026 (75) O2 - O2_\$3

Short contacts for 1 Regenerated

2.6547 (123) O1 - O2_\$2

2.6841 (189) O1 - O1_\$1

2.6547 (124) O2 - O1_\$2

2.6869 (197) O2 - O2_\$3

Symmetry:

\$1 -X, -Y+1, -Z

\$2 -X+1, -Y, -Z

\$3 -X+1, -Y-1, -Z

D-HA	<i>d</i> (DH)	<i>d</i> (DA)	<i>d</i> (HA)	∠D-HA	
2					
O1-H01AO2(#1)	0.840(9)	2.701(13)	1.968(9)	145.31(63)	
O2-H02AO1(#1)	0.840(4)	2.701(13)	1.964(9)	146.06(65)	
C7-H7ABr4(#0)	0.990(10)	3.777(10)	2.871(1)	152.59(60)	
C14-H14BBr1(#2)	0.990(9)	3.726(9)	2.832(1)	150.54(56)	
C4-H4Br1(#3)	0.950(13)	3.752(12)	2.980(1)	139.32(71)	
C11-H11Br4(#4)	0.950(9)	3.719(10)	2.986(1)	134.95(62)	
C6-H6AO2(#5)	0.990(10)	3.791(13)	2.804(9)	173.19(61)	
C13-H13BO1(#4)	0.990(4)	3.689(12)	2.704(8)	173.14(58)	
		3			
O1-H01AO2(#1)	0.840(7)	2.718(10)	2.018(7)	140.43(51)	
O2-H02BO1(#1)	0.840(7)	2.718(10)	1.954(7)	150.86(52)	
C7-H7AI4 (#0)	0.990(4)	3.672(4)	2.769(1)	151.89(26)	
C14-H14BI1(#2)	0.990(4)	3.640(4)	2.754(1)	149.22(25)	
C4-H4I1(#3)	0.950(5)	3.563(5)	2.817(1)	136.14(28)	
C11-H11I4(#4)	0.950(4)	3.551(4)	2.840(1)	132.43(26)	
C6-H6AO2(#5)	0.990(9)	3.938(11)	2.954(7)	172.35(51)	
C13-H13BO1(#4)	0.990(7)	3.843(10)	2.861(6)	171.20(48)	

Table S4 Hydrogen bonding parameters (Å, $^{\circ}$) for 2 and 3

Symmetry ;

For **2-3:**

Short contacts for 2

	3.6622	(15)	Br3	.Br3	_\$4
	2.7015	(109)	01 -	02_	\$2
	2.7252	(159)	01 -	01_	\$1
	2.7015	(109)	02 -	01_	\$2
	2.7138	(180)	02 -	02_	\$3
Sho	rt conta	cts for	3		

2.7415 (132) O1 - O1_\$1

2.7185 (95) O2 - O1_\$2

Symmetry:

- \$1 -X, -Y+1, -Z
- \$2 -X+1, -Y, -Z
- \$3 -X+1, -Y-1, -Z
- \$4 -x+1,-y,-z+1

Fig. S1 ORTEP drawing of 1 showing the molecule in the asymmetric unit with anisotropic displacement parameters are drawn at 50% probability.

Fig. S2 Perspective view of the 1D-coordination polymeric chain in 2. Insert shows theORTEP drawing of 2 showing the molecule in the asymmetric unit with anisotropic displacement parameters are drawn at 50% probability.

Fig. S3 Perspective view of the 1D-coordination polymeric chain in 3. Insert shows the ORTEP drawing of 3 showing the molecule in the asymmetric unit with anisotropic displacement parameters are drawn at 50% probability.

Fig. S4 Packing diagram of the hydrogen bonded 2D network in 2 along the *a*-axis.

Fig. S5 Packing diagram of the hydrogen bonded 2D network in 3 along the *a*-axis.

Fig. S6 ORTEP drawing of **4** showing the molecule in the asymmetric unit with anisotropic displacement parameters are drawn at 50% probability.

Fig. S7 TGA of 1, revealing initial 18% loss corresponds to the removal of hep-H ligand.

Fig. S10 Perspective view of the 1D-coordination polymeric chain in **1-Regenerated**. Insert shows the ORTEP drawing of **1-Regenerated** showing the molecule in the asymmetric unit with anisotropic displacement parameters are drawn at 50% probability.

Fig. S11 DSC: (a) 1, (b) 2 and (c) 4.