Supporting Information

Chiral phosphonite, phosphite and phosphoramidite η^6 -areneruthenium(II) complexes: application to the kinetic resolution of allylic alcohols.

Mariano A. Fernández-Zúmel, Beatriz Lastra-Barreira, Marcus Scheele, Josefina Díez, Pascale Crochet* and José Gimeno*

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química

Organometálica "Enrique Moles" (Unidad Asociada al CSIC), Facultad de Química,

Universidad de Oviedo, E-33071 Oviedo, Spain. Fax: (+34)-985 10 34 46, e-mail: crochetpascale@uniovi.es (P.C.); jgh@uniovi.es (J.G.)

Contents

1) X-ray crystal structure determination of complexes 1a, 1b, 3b and 3c.

2) Optimization of the catalytic activity.

3) References.

1. X-ray crystal structure determination of complexes 1a, 1b, 3b and 3c. Suitable single crystal of 1a·¼CH₂Cl₂, 1b·CH₂Cl₂, 3b and 3c for X-ray diffraction analyses were obtained by slow diffusion of hexane (1b, 3b, 3c) or diethylether (1a) into a concentrated solution of the appropriate complex in dichloromethane. The most relevant crystallographic and refinement data are given in Tables S1 (1a·¼CH₂Cl₂), S3 (1b·CH₂Cl₂), S5 (3b) and S7

(3c). Selected bond distance and angle values are given in Tables S2 (1a·l/4CH₂Cl₂), S4 (1b·CH₂Cl₂), S6 (3b) and S8 (3c). For complexes 1b·CH₂Cl₂ and 3c, diffraction data were recorded on a Oxford Diffraction Xcalibur Nova single crystal diffractometer using Cu-K α radiation ($\lambda = 1.5418$ Å). The data were collected through the oscillation method, with 1° oscillation and variable exposure time per frame (4-20 s), and a crystal-to-detector distance of 65 mm. The data collection strategy was calculated with the program CrysAlis Pro CCD.¹ Data reduction and cell refinement were performed using the program CrysAlis Pro RED.¹ Empirical absorption correction was applied by means of SCALE3 ABSPACK algorithm as implemented in the program CrysAlis Pro RED.¹ For derivatives 1a·l/4CH₂Cl₂ and 3b, diffraction data were recorded on a Nonius KappaCCD single crystal diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). The data were collected through the oscillation method, with 1° oscillation and 80 s exposure time per frame, and a crystal-to-detector distance of 35 mm. The data collection strategy was calculated with the program Collect.² Data reduction and cell refinement were performed. Second distance of 35 mm. The data collection strategy was calculated with the program Collect.² Data reduction and end to a second distance of 35 mm. The data collection strategy was calculated with the program Collect.³ Semi-empirical absorption correction was applied by means of SORTAV.⁴

In all the cases, the software package WINGX was used for space group determination, structure solution and refinement.⁵ Crystal structure of **3c** was solved by direct methods using the program SIR92.⁶ For compounds **1a**·**1**/**4**C**H**₂C**l**₂, **1b**·C**H**₂C**l**₂ and **3b**, crystal structures were solved by Patterson interpretation and phase expansion using DIRDIF.⁷ Isotropic least-square refinement on F^2 was carried out with SHELXL-97.⁸ During the final stage of the refinements, all the positional parameters and the anisotropic temperature factors of all non-hydrogen atoms were refined. The hydrogen atoms were geometrically located and their coordinates were refined riding on their parent atomswith isotropic displacement parameters set to 1.2 times the U_{eq} of the atoms to which they are attached (1.5 for methyl groups). For complexes **1a**·**1**/**4**C**H**₂C**l**₂ and **1b**·C**H**₂C**l**₂, the maximum residual electron density is located near to heavy

atoms and CH₂Cl₂ solvent, respectively. The function minimized was $[\Sigma w(F_o^2 - F_c^2)/\Sigma w(F_o^2)]^{\frac{1}{2}}$ where w = $1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ (a and b values are given in Tables S1, S3, S5 and S7) with $\sigma(F_o^2)$ from counting statistic and P = (max $(F_o^2, 0) + 2F_c^2)/3$.

Atomic scattering factors were taken from the International Tables for X-ray Crystallography.⁹ Geometrical calculations were made with PARST.¹⁰ Crystallographic plots were made with PLATON.¹¹ Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication N° CCDC 769455 (**1a**·1/4CH₂Cl₂), CCDC 769456 (**1b**·CH₂Cl₂), CCDC 769457 (**3b**) and CCDC 769458 (**3c**). The data can be obtained free of charge via <u>http://www.ccdc.cam.ac.uk/conts/retrieving.html</u>.

Empirical formula	$C_{32}H_{23}Cl_2O_2PRu\cdot {}^1\!\!/_4CH_2Cl_2$	
Formula weight	663.68	
Temperature	150(2) K	
Wavelength	1.5418 Å	
Crystal system	triclinic	
Space group	P-1	
Unit Cell dimensions	a = 11.5207(2) Å	$\alpha = 80.3851(10)^{\circ}$
	b = 14.5067(3) Å	$\beta = 89.6249(2)^{\circ}$
	c = 16.9585(3) Å	$\gamma = 84.3682(12)^{\circ}$
Volume	2780.79(9) Å ³	
Ζ	4	
Calculated density	1.585 g/cm ³	
F(000)	1338	
Crystal size	0.15 x 0.15 x 0.12 mm ³	
Theta range for data collection	2.64° to 70.14°	
Reflections collected	39888	
Independent reflections	10255 [R(int) = 0.0464]	
Completeness to theta $= 70.14$	97.0%	
Data / restraints / parameters	10255 / 1 / 703	
Weight function (a, b)	0.1004, 4.9948	
Final R indices [I>2sigma(I)]	$R_1 = 0.0459, wR_2 = 0.1363^{[a]}$	
R indices (all data)	$R_1 = 0.0586, wR_2 = 0.1646^{[a]}$	
Largest diff. peak and hole	1.071 and -1.161 e.Å ⁻³	

Table S1. Crystal data and structure refinement for 1a⁻¹/₄CH₂Cl₂.

 $\overline{[a]} R_1 = \Sigma(|F_o| - |F_c|) / \Sigma |F_o|. \ wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{\frac{1}{2}}.$

Bond distances (Å)		Bond angles (°)	
Ru-C*	1.7110(4)	C*-Ru-Cl(1)	125.43(4)
Ru-Cl(1)	2.3904(14)	C*-Ru-Cl(2)	126.38(3)
Ru-Cl(2)	2.3980(11)	C*-Ru-P	131.86(3)
Ru-P	2.2659(11)	Cl(1)-Ru-Cl(2)	88.38(5)
O(1)-P	1.625(3)	Cl(1)-Ru-P	85.99(4)
O(2)-P	1.615(3)	Cl(2)-Ru-P	84.37(4)
C(21)-P	1.793(5)	O(1)-P-O(2)	102.57(16)
		O(1)-P-C(21)	97.25(19)
		O(2)-P-C(21)	106.91(19)

Table 52. Science officialities and angle values for 1a /4CH2CI	Table S2	. Selected bond	l distance and	angle val	ues for 1	a·1/4CH2Cl2
--	----------	-----------------	----------------	-----------	-----------	-------------

 C^* = centroid of the benzene ring (C(27), C(28), C(29), C(30), C(31) and C(32) carbon atoms).

Empirical formula	$C_{32}H_{23}Cl_2O_3PRu{\cdot}CH_2Cl_2$	
Formula weight	743.37	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	triclinic	
Space group	P-1	
Unit Cell dimensions	a = 9.8464(4) Å	$\alpha = 70.902(3)^{\circ}$
	b = 11.4973(3) Å	$\beta = 81.985(3)^{\circ}$
	c = 15.3719(5) Å	$\gamma = 65.405(3)^{\circ}$
Volume	1495.22(9) Å ³	
Z	2	
Calculated density	1.651 g/cm^3	
F(000)	748	
Crystal size	$0.14 \text{ x } 0.07 \text{ x } 0.04 \text{ mm}^3$	
Theta range for data collection	3.04° to 73.99°	
Reflections collected	15171	
Independent reflections	5575 [R(int) = 0.0197]	
Completeness to theta =73.99	91.7%	
Data / restraints / parameters	5575 / 0 / 379	
Weight function (a, b)	0.1266, 2.7167	
Final R indices [I>2sigma(I)]	$R_1 = 0.0496, wR_2 = 0.1611^{[a]}$	
R indices (all data)	$R_1 = 0.0560, wR_2 = 0.1848^{[a]}$	
Largest diff. peak and hole	1.191 and -2.214 e.Å ⁻³	

Cable S3. Crystal data and	l structure refinement for 1b·CH₂Cl₂ .
-----------------------------------	---

^[a] $R_1 = \Sigma(|F_0| - |F_c|) / \Sigma |F_0|$. $wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma[w(F_0^2)^2]\}^{\frac{1}{2}}$.

Bond distances (Å)		Bond angles (°)	
Ru-C*	1.7038(4)	C*-Ru-Cl(1)	124.49(4)
Ru-Cl(1)	2.3975(13)	C*-Ru-Cl(2)	127.53(4)
Ru-Cl(2)	2.3968(13)	C*-Ru-P	128.92(4)
Ru-P	2.2540(13)	Cl(1)-Ru-Cl(2)	87.34(5)
O(1)-P	1.609(4)	Cl(1)-Ru-P	90.17(5)
O(2)-P	1.607(4)	Cl(2)-Ru-P	85.10(5)
O(3)-P	1.580(4)	O(1)-P-O(2)	102.62(19)
		O(1)-P-O(3)	99.86(19)
		O(2)-P-O(3)	102.78(19)

Table S4. Selected bond distance and angle values for 1b·CH₂Cl₂.

 C^* = centroid of the benzene ring (C(27), C(28), C(29), C(30), C(31) and C(32) carbon atoms).

Table S5. Crystal data and structure refinement for 3b.

Empirical formula	$C_{35}H_{29}Cl_2O_3PRu$	
Formula weight	700.52	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	P n a 21	
Unit Cell dimensions	a = 13.4193(3) Å	$\alpha = 90^{\circ}$
	b = 18.7656(2) Å	$\beta = 90^{\circ}$
	c = 11.9365(2) Å	$\gamma = 90^{\circ}$
Volume	3005.86(9) Å ³	
Ζ	4	
Calculated density	1.548 g/cm^3	
F(000)	1424	
Crystal size	0.17 x 0.15 x 0.10 mm ³	
Theta range for data collection	1.87° to 25.35°	
Reflections collected	18991	
Independent reflections	2896 [R(int) = 0.030]	
Completeness to theta = 25.35	99.9%	
Data / restraints / parameters	2896 / 0 / 382	
Weight function (a, b)	0.0596, 0.00	
Final R indices [I>2sigma(I)]	$R_1 = 0.0283, wR_2 = 0.07$	757 ^[a]
R indices (all data)	$R_1 = 0.0375, wR_2 = 0.10$)09 ^[a]
Largest diff. peak and hole	$0.765 \text{ and } -0.716 \text{ e.}\text{Å}^{-3}$	

^[a] $R_1 = \Sigma(|F_0| - |F_c|) / \Sigma |F_0|$. $wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma[w(F_0^2)^2]\}^{\frac{1}{2}}$.

Table S6.	Selected	bond	distance	and	angle	values	for 3b .
-----------	----------	------	----------	-----	-------	--------	-----------------

Bond distances (Å)		Bond angles (°)	
Ru-C*	1.740(12)	C*-Ru-Cl(1)	125.9(9)
Ru-Cl(1)	2.4106(18)	C*-Ru-Cl(2)	125.0(6)
Ru-Cl(2)	2.3894(18)	C*-Ru-P	128.5(3)
Ru-P	2.2372(16)	Cl(1)-Ru-Cl(2)	87.20(8)
O(1)-P	1.614(4)	Cl(1)-Ru-P	89.62(6)
O(2)-P	1.599(4)	Cl(2)-Ru-P	87.97(7)
O(3)-P	1.609(4)	O(1)-P-O(2)	102.8(2)
		O(1)-P-O(3)	98.8(2)
		O(2)-P-O(3)	98.6(2)

 C^* = centroid of the mesitylene ring (C(27), C(28), C(29), C(30), C(31) and C(32) carbon atoms).

Table S7. Crystal data and structure refinement for 3c.

Empirical formula	$C_{34}H_{34}Cl_2NO_2PRu$	
Formula weight	691.56	
Temperature	293(2) K	
Wavelength	1.54180 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit Cell dimensions	a = 12.0637(4) Å	$\alpha = 90^{\circ}$
	b = 8.3804(3) Å	$\beta = 95.135(3)^{\circ}$
	c = 15.1019(5) Å	$\gamma = 90^{\circ}$
Volume	1520.65(9) Å ³	
Z	2	
Calculated density	1.510 g/cm ³	
F(000)	708	
Crystal size	$0.143 \text{ x} 0.058 \text{ x} 0.017 \text{ mm}^3$	
Theta range for data collection	2.94° to 74.00°	
Reflections collected	11273	
Independent reflections	4576 [R(int) = 0.0459]	
Completeness to theta $= 74.00$	99.5%	
Data / restraints / parameters	4576 / 0 / 373	
Weight function (a, b)	0.0596, 1.000	
Final R indices [I>2sigma(I)]	$R_1 = 0.0382, wR_2 = 0.0984^{[a]}$	
R indices (all data)	$R_1 = 0.0480, wR_2 = 0.1069^{[a]}$	
Largest diff. peak and hole	0.619 and -0.691 e.Å ⁻³	

^[a] $R_1 = \Sigma(|F_0| - |F_c|) / \Sigma |F_0|$. $wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma[w(F_0^2)^2]\}^{\frac{1}{2}}$.

|--|

Bond distances (Å)		Bond angles (°)	
Ru-C*	1.73(2)	C*-Ru-Cl(1)	127.7(4)
Ru-Cl(1)	2.4165(16)	C*-Ru-Cl(2)	124.7(3)
Ru-Cl(2)	2.3917(16)	C*-Ru-P	130.5(6)
Ru-P	2.2618(11)	Cl(1)-Ru-Cl(2)	87.82(7)
O(1)-P	1.619(4)	Cl(1)-Ru-P	84.94(6)
O(2)-P	1.625(5)	Cl(2)-Ru-P	87.03(6)
N(1)-P	1.650(5)	O(1)-P-O(2)	100.6(2)
		O(1)-P-N(1)	97.7(2)
		O(2)-P-N(1)	110.3(2)

 C^* = centroid of the mesitylene ring (C(26), C(27), C(28), C(29), C(30), and C(31) carbon atoms).

2. Optimization of the catalytic activity

Table S9. Kinetic resolution of 1-phenyl-2-propen-1-ol by complex (R)-2a using different quantities of base.^a

Quantity of KOtBu	Time	Alcohol (%) ^{b,c}	e.e. (%) ^c
1 mol%	1.5 h	95	< 0.5 %
1 mol%	5 h	90	2 (S)
1 mol%	16 h	89	2 (S)
2 mol%	1.5 h	63	10 (S)
2 mol%	3 h	48	13 (S)
2 mol%	9 h	18	19 (S)
3 mol%	0.25 h	77	4 (S)
3 mol%	0.5 h	50	6 (S)
3 mol%	5 h	22	7 (S)
5 mol%	0.25 h	51	4 (S)
5 mol%	5 h	45	5 (S)
5 mol%	16 h	45	5 (S)

^a Reactions carried out at 45°C using 4 mmol of 1-phenyl-2-propen-1-ol, 1 mol% of (R)-2a, the indicated quantity of KOtBu, and 20 mL of THF. ^b Allylic alcohol remaining. ^c Determined by GC, absolute configuration of the major enantiomer indicated in parenthesis.

Table S10. Kinetic resolution of 1-phenyl-2-propen-1-ol by complex (R)-2a at different

temperatures.^a

Temperature	Time	Alcohol (%) ^{b,c}	e.e. (%) ^c
25°C	16 h	98	not determined
35°C	4 h	83	7 (S)
35°C	16 h	71	8 (S)
45°C	3 h	48	13 (S)
55°C	1.75 h	52	8 (S)
55°C	3 h	27	11 (S)

^a Reactions carried out at the temperature indicated, using 4 mmol of 1-phenyl-2-propen-1-ol, 1 mol% of (*R*)-2a, 2 mol% of KOtBu, and 20 mL of THF. ^b Allylic alcohol remaining. ^c Determined by GC, absolute configuration of the major enantiomer indicated in parenthesis.

3. References

- 1 *CrysAlis^{Pro} CCD*, *CrysAlis^{Pro} RED*, Oxford Diffraction Ldt, Abingdon, Oxfordshire, UK, 2008.
- 2 *Collect*: data collection software, Bruker AXS, Delf, The Netherlands, 2004.
- 3 Z. Otwinowski, W. Minor, *Methods Enzymol.*, 1997, 276, 307.
- 4 R. H. Blessing, Acta Crystallogr., Sect. A, 1995, **51**, 33.
- 5 L. J. Farrugia, J. Appl. Crystallogr., 1999, **32**, 837.
- 6 A. Altomare, G. Cascarano, C. Giacovazzo and A. Gualardi, J. Appl. Crystallogr., 1993, 26, 343.
- P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. García-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, *The DIRDIF Progran System*, Technical Report of the Crystallographic Laboratory, University of Nijmegen, Nijmegen, The Netherlands, 1999.
- 8 G. M. Sheldrick, *SHELXL97: Program for the refinement of Crystal Structures*, University of Göttingen, Göttingen, Germany, 1997.
- 9 International Tables for X-ray Crystallography, Kynoch Press, Birminghan, UK, 1994,
 Vol. IV (present distributor: Kluwer Academic Publishers, Dordrecht, The Netherlands).
- 10 M. Nardelli, Comput. Chem., 1983, 7, 95.
- A. L. Spek, *PLATON: A multipurpose Crystallographic Tool*, University of Utrecht, The Netherlands, 2007.