ELECTRONIC SUPPLEMENTARY INFORMATION

Monocationic gold(III) Gly-L-His and L-Ala-L-His dipeptide complexes: crystal structures arising from solvent free and solvent-containing crystal formation and structural modifications tuned by counter-anions

Urszula Rychlewska,^a Beata Warżajtis,^a Biljana Đ. Glišić,^b Marija D. Živković,^b Snežana Rajković^b and Miloš I. Djuran^{*b}

^aFaculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland ^bDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia

Abstract

Monocationic gold(III) complexes with histidine-containing peptides, glycyl-L-histidine (Gly-L-His) and L-alanyl-L-histidine (L-Ala-L-His) have been synthesized and characterized by ¹H NMR spectroscopy and X-ray crystallography. The crystallized Au(III) complexes, [Au(Gly-L-His-*N*,*N'*,*N''*)Cl]NO₃·1.25H₂O and [Au(L-Ala-L-His-*N*,*N'*,*N''*)Cl]NO₃·2.5H₂O, were obtained from water solution at pH < 1.0. The chemical shifts in the ¹H NMR spectra of [Au(Gly-L-His-*N*,*N'*,*N''*)Cl]NO₃·2.5H₂O and [Au(L-Ala-L-His-*N*,*N'*,*N''*)Cl]NO₃·2.5H₂O complexes were compared with those for the corresponding Pd(II) complexes and for Pd(II) and Au(III) complexes with Gly-Gly-L-His tripeptide. Crystal data for the hydrated [Au(Gly-L-His-*N*,*N'*,*N''*)Cl]NO₃·1.25H₂O complex and its serendipitously obtained unhydrated form were compared with previously reported X-ray data for the hydrated chloride complex [Au(Gly-L-His-*N*,*N'*,*N''*)Cl]Cl³H₂O and with the analogous, though uncharged, Pd(II) and Pt(II) complexes. Furthermore, in the present study the crystal structure of the nitrate salt of Au(III) complex with L-Ala-L-His dipeptide, [Au(L-Ala-L-His-*N*,*N'*,*N''*)Cl]NO₃·2.5H₂O has been determined.

Keywords: Gold(III) complexes; Glycyl-L-histidine; L-Alanyl-L-histidine; Proton NMR spectroscopy; X-Ray crystallography.

	[Au(Gly-L-His- N,N',N'')Cl]NO ₃ ·1.25H ₂ O	[Au(Gly-L-His- <i>N</i> , <i>N</i> ', <i>N</i> '')Cl]NO ₃	[Au(L-Ala-L-His- N,N',N'')Cl]NO ₃ ⁻ 2.5H ₂ O
Au1—N1	1.987(8) 2.026(10)	2.034(13)	2.019(5)
Au1—N2	2.020(10) 2.021(10)	2.010(13)	1.995(5)
Au1—N3	1.996(9) 1.913(10)	1.998(11)	2.001(6)
Au1—Cl1	2.293(3) 2.297(3)	2.294(4)	2.2869(16)
N1—Au1—N2	82.8(4) 82.3(4)	84.1(5)	81.7(2)
N1—Au1—N3	175.3(4) 175.4(4)	174.1(6)	175.8(2)
N3—Au1—N2	92.7(4) 93.2(4)	91.0(5)	94.2(2)
N1—Au1—Cl1	92.5(2) 92.2(3)	94.0(3)	92.93(17)
N2—Au1—Cl1	174.7(3) 174.0(3)	174.2(4)	174.56(17)
N3—Au1—Cl1	92.1(3) 92.4(3)	91.3(3)	91.20(17)

Table 1S Selected bond distances (Å) and bond angles (°) for Au(III) complexes

Table 2S Hydrogen bond parameters for Au(III) complexes with Gly-L-His and L-Ala-L-His

dipeptides

[Au(Gly-L-His- <i>N,N',N''</i>)Cl]NO3 [·] 1.25H ₂ O				
D—H…A	<i>D</i> —H(Å)	$H \cdots A(Å)$	$D \cdots A(\text{\AA})$	D —H··· $A(^{\circ})$
$N1$ — $H1N$ ···O2 W^{i}	0.90	2.07	2.961(15)	171
N1—H2N···O1 ⁱⁱ	0.90	2.16	2.876(18)	136
N1'—H1N'····O2W ⁱ	0.90	2.05	2.932(15)	166
N1'—H2N'····O5N ⁱ	0.90	2.11	2.971(16)	161
N4—H4N…O6N	0.86	2.08	2.90(2)	159
N4'—H4N'…O1N ⁱⁱⁱ	0.86	2.00	2.849(17)	171
O3—H3O…O1N	0.82	2.03	2.680(15)	135
O3'—H3O'…O1W	0.82	1.92	2.709(17)	162
O1W···O3W ^{iv}			2.728(17)	
$O2W \cdots O2N^{v}$			2.770(17)	
O2W···O3N ^v			3.217(18)	
O2W…O5N ^{iv}			2.843(15)	
O3W…O4N ^{vi}			2.833(22)	
O3W…O6N			3.064(19)	

Symmetry codes: (i) *x*-1/2, *y*+1/2, *z*; (ii) -*x*+3/2, *y*-1/2, -*z*+2; (iii) -*x*+2, *y*, -*z*+2; (iv) *x*, *y*-1, *z*; (v) -*x*+2, *y*-1, -*z*+2; (vi) *x*, *y*+1, *z*.

[Au(Gly-L-His-N,N',N'')Cl]NO₃

4(°)

Symmetry codes: (i) x, y, z-1; (ii) $-x+3/2, y+1/2, -\underline{z}$; (iii) x+1/2, -y+3/2, -z+1.

[Au(L-Ala-L-His- <i>N,N',N''</i>)Cl]NO ₃ [·] 2.5H ₂ O				
D—H··· A	<i>D</i> —H(Å)	$H \cdots A(Å)$	$D \cdots A(\text{\AA})$	$D - H \cdots A(^{\circ})$
O3—H3O…O1W	0.82	1.85	2.653 (14)	168

Supplementary Material (ESI) for Dalton Transaction	ons
This journal is © The Royal Society of Chemistry 2	010

N1—H1N···O2W	0.90	2.00	2.887 (9)	170
N1—H2N···O3W	0.90	2.26	3.142 (14)	165
N4—H4N…O2N	0.86	1.96	2.808 (19)	170
N4—H4N…O1N'	0.86	2.08	2.89 (3)	157
N4—H4N…O3N'	0.86	2.33	3.07 (4)	144
O1W…O1N ^{,i}			2.64 (3)	
O1W…O2N ^{,ii}			2.52(2)	
O2W…O3N ⁱⁱⁱ			3.036 (16)	
O2W…O3N ^{iv}			3.036 (16)	
O3W····O1 ^v			2.905 (12)	
O3W…O1N ^{vi}			3.033 (24)	

Symmetry codes: (i) -*x*+2, *y*-1, *z*; (ii) -*x*-1/2, -*y*+3/2, -*z*+1; (iii) *x*, *y*, *z*-1; (iv) -*x*+2, -*y*+1, *z*-1; (v) -*x*+3/2, *y*-1/2, -*z*; (vi) -*x*+2, -*y*, *z*-1

Fig. 1S Arrangement of nitrate anions and water molecules (ball and stick representation) with respect to the complex cations (capped sticks, hydrogen atoms omitted) in hydrated (a) and unhydrated (b) crystal forms of [Au(Gly-L-His-N,N',N'')Cl]NO₃, and in [Au(L-Ala-L-His-N,N',N'')Cl]NO₃^{-2.5H₂O crystal (c).}