Supporting information for:

# Coordination chemistry in the solid state: synthesis and interconversion of pyrazolium salts, pyrazole complexes, and pyrazolate MOFs

Christopher J. Adams,\* Mukhtar A. Kurawa and A. Guy Orpen\*

School of Chemistry, University of Bristol, Bristol BS8 1TS

Page 2: XPRD patterns for all species.

Page 9: Tables of hydrogen bond lengths and angles.



XRPD for  $[H_2Pz]_2[CoCl_4]$  **1**. Red = calculated from **1** (RT); green = mechanochemical; pink = vapour absorption; blue = calculated from **1** (LT).



XRPD for  $[CoCl_2(Hpz)_2]$  **2** Blue = calculated from the crystal structure; green = mechanochemical; purple =  $2[H_2pz]Cl + Co(OH)_2$ ; brown =  $2[H_2pz]Cl + CoCO_3$ ; pink = **1** + 2KOH; turquoise = **1** + K<sub>2</sub>CO<sub>3</sub>.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010



XRPD for  $[H_2Pz]_2[ZnCl_4]$  **3**. Red = calculated from **3** (RT); green = mechanochemical; pink = vapour absorption; blue = calculated from **3** (LT).



XRPD for  $[ZnCl_2(Hpz)_2]$  **4**. Red = calculated from **4** (RT); green = mechanochemical; brown = H<sub>2</sub>pzCl +  $3Zn(OH)_2 \cdot 2ZnCO_3$ ; pink = **3** + 2KOH; turquoise = **3** + K<sub>2</sub>CO<sub>3</sub>; blue = calculated from **4** (LT).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010



XRPD pattern for  $[H_2pz]_2[CuCl_4]$  **5**. Green = mechanochemical; pink = HCl gas absorption.



XRPD pattern for  $[{CuCl_2(Hpz)_2}_n]$  6. Blue = calculated; green = mechanochemical; brown =  $CuCO_3 \cdot Cu(OH)_2 + 4[H_2pz]Cl pink = 5 + 2KOH$ ; turquoise = 5 + K<sub>2</sub>CO<sub>3</sub>.



XRPD patterns for  $[{Ni(pz)_2}_n]$  7. Brown and blue = calculated from the crystal structures of  $\beta$ - $[Ni(pz)_2]$  and  $\alpha$ - $[Ni(pz)_2]$  respectively; pink =  $[NiCl_2(Hpz)_2] + 2KOH$ .



XRPD patterns for  $[{Cu(pz)_2}_n]$  (8) + 2KCl. Blue = calculated from the crystal structure; pink = 6 + 2KOH; brown calculated from the crystal structure of  $\alpha$ -[Ni(pz)<sub>2</sub>].

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010



XRPD patterns for  $[{Zn(pz)_2}_n]$  9. Blue = calculated from the crystal structure; green =  $3Zn(OH)_2 \cdot 2ZnCO_3 + 10Hpz$ ; pink = 4 + 2KOH; turquoise = 4 + 2t-BuOK.



XRPD patterns for  $[Ni(im)_2]$ . 11 blue = calculated from ALIDUU; pink =  $[Ni(Him)_2Cl_2] + 2KOH$ .



XRPD for  $[Cu(im)_2]$  12. blue = calculated from CUIMDZ02; pink =  $[Cu(Him)_2Cl_2] + 2KOH$ .



XRPD for  $[Zn(im)_2]$  13. blue = calculated from IMIDZB01; pink =  $[Zn(Him)_2Cl_2] + 2KOH$ .



XRPD for  $[Co(im)_2]$  14. blue = calculated from IMZYCO01; green =  $[Co(Him)_2Cl_2] + 2KOH$ .

| D-HA                   | d(D-H) | d(HA) | d(DA)      | <(DHA) |
|------------------------|--------|-------|------------|--------|
| N1-H1ACl1 <sup>A</sup> | 0.88   | 2.34  | 3.1537(18) | 153.5  |
| N2-H2ACl2 <sup>A</sup> | 0.88   | 2.40  | 3.1497(18) | 143.3  |
| N3-H3ACl4 <sup>B</sup> | 0.88   | 2.23  | 3.1012(17) | 170.6  |
| N4-H4ACl1 <sup>B</sup> | 0.88   | 2.40  | 3.1391(18) | 141.1  |

### Table 1: Hydrogen-bonding geometry for 1 (LT) [Å, °].

Symmetry transformations used to generate equivalent atoms: <sup>A</sup> x,y-1,z <sup>B</sup> x-1/2,-y+3/2,z+1/2

| Table 2: | Hydrogen-be | onding geometry | / for <b>1</b> | (RT) [À | Á, °]. |
|----------|-------------|-----------------|----------------|---------|--------|
|----------|-------------|-----------------|----------------|---------|--------|

| D-HA                         | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|------------------------------|--------|-------|----------|--------|
| N(1)-H(1A)Cl(1) <sup>A</sup> | 0.86   | 2.35  | 3.159(2) | 157.2  |
| N(2)-H(2A)Cl(2) <sup>A</sup> | 0.86   | 2.41  | 3.177(2) | 149.3  |
| N(3)-H(3A)Cl(4) <sup>B</sup> | 0.86   | 2.25  | 3.109(2) | 172.7  |
| N(4)-H(4A)Cl(1) <sup>B</sup> | 0.86   | 2.50  | 3.215(3) | 141.7  |
|                              |        |       |          |        |

Symmetry transformations used to generate equivalent atoms: <sup>A</sup> x,y-1,z <sup>B</sup> x-1/2,-y+3/2,z+1/2

### Table 3: Hydrogen bonds for 2 [Å and °].

| D-HA                        | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|-----------------------------|--------|-------|----------|--------|
| N(2)-H(4)Cl(2) <sup>A</sup> | 0.86   | 2.65  | 3.176(4) | 120.6  |
| N(2)-H(4)Cl(2) <sup>B</sup> | 0.86   | 2.74  | 3.349(4) | 129.5  |

Symmetry transformations used to generate equivalent atoms: <sup>A</sup> x,y,z <sup>B</sup> -x,-y+2,-z+1

| D-HA                         | d(D-H) | d(HA) | d(DA)      | <(DHA) |
|------------------------------|--------|-------|------------|--------|
| N(1)-H(1A)Cl(1) <sup>A</sup> | 0.88   | 2.35  | 3.1586(14) | 153.5  |
| N(2)-H(2A)Cl(2) <sup>A</sup> | 0.88   | 2.40  | 3.1478(13) | 143.0  |
| N(3)-H(3A)Cl(4) <sup>B</sup> | 0.88   | 2.22  | 3.0964(13) | 171.2  |
| N(4)-H(4A)Cl(1) <sup>B</sup> | 0.88   | 2.42  | 3.1481(15) | 140.7  |

#### Table 4: Hydrogen-bonding geometry for 3 (LT) [Å, °].

Symmetry transformations used to generate equivalent atoms: <sup>A</sup> x,y-1,z <sup>B</sup> x-1/2,-y+3/2,z+1/2

Table 5: Hydrogen-bonding geometry for 3 (RT) [Å, °].

| D-HA                         | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|------------------------------|--------|-------|----------|--------|
| N(1)-H(1A)Cl(1) <sup>A</sup> | 0.86   | 2.34  | 3.146(5) | 156.7  |
| N(2)-H(2A)Cl(2) <sup>A</sup> | 0.86   | 2.41  | 3.171(6) | 148.1  |
| N(3)-H(3A)Cl(4) <sup>B</sup> | 0.86   | 2.24  | 3.097(5) | 173.5  |
| N(4)-H(4A)Cl(1) <sup>B</sup> | 0.86   | 2.47  | 3.193(6) | 142.0  |

Symmetry transformations used to generate equivalent atoms: <sup>A</sup> x,y-1,z <sup>B</sup> x-1/2,-y+3/2,z+1/2

## Table 6: Hydrogen-bonding geometry for 4 (LT) [Å, °].

| D-HA                         | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|------------------------------|--------|-------|----------|--------|
| N(2)-H(2A)Cl(1) <sup>A</sup> | 0.86   | 2.52  | 3.266(2) | 145.3  |
| N(4)-H(4A)Cl(2) <sup>B</sup> | 0.86   | 2.45  | 3.251(2) | 156.0  |

Symmetry transformations used to generate equivalent atoms: <sup>A</sup>-x,y+1/2,-z+3/2 <sup>B</sup>-x,y-1/2,-z+3/2

| D-HA                         | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|------------------------------|--------|-------|----------|--------|
| N(2)-H(2A)Cl(2) <sup>A</sup> | 0.86   | 2.50  | 3.303(2) | 155.2  |
| N(4)-H(4B)Cl(1) <sup>B</sup> | 0.86   | 2.55  | 3.302(2) | 145.9  |

Table 7: Hydrogen-bonding geometry for 4 (RT) [Å, °].

Symmetry transformations used to generate equivalent atoms: <sup>A</sup>-x,y-1/2,-z+1/2 <sup>B</sup>-x,y+1/2,-z+1/2

Table 8: Hydrogen-bonding geometry for 6 [Å, °].

| D-HA                         | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|------------------------------|--------|-------|----------|--------|
| N(2)-H(1A)Cl(1) <sup>A</sup> | 0.88   | 2.74  | 3.340(5) | 126.9  |
| N(2)-H(1A)Cl(1) <sup>A</sup> | 0.88   | 2.62  | 3.204(5) | 124.6  |
| N(4)-H(4A)Cl(2) <sup>B</sup> | 0.88   | 2.48  | 3.017(5) | 120.3  |

Symmetry transformations used to generate equivalent atoms: <sup>A</sup>-x+2,-y+1,-z+1 <sup>B</sup> x+1,y,z

Table 9: Hydrogen bond geometry for  $[H_2pz]Cl$  [Å and °].

| D-HA                         | d(D-H) | d(HA) | d(DA)      | <(DHA) |
|------------------------------|--------|-------|------------|--------|
| N(1)-H(1A)Cl(1) <sup>A</sup> | 0.88   | 2.20  | 3.0378(18) | 158.0  |
| N(2)-H(2A)Cl(1) <sup>B</sup> | 0.88   | 2.20  | 3.0353(19) | 157.9  |

Symmetry transformations used to generate equivalent atoms: <sup>A</sup> x-1/2,-y+1/2,z+1/2; <sup>B</sup> -x+1,-y,-z+1