#### Supplementary Information for

# "Spectral and Redox Properties of Zinc Porphyrin Core Dendrimers with Triarylamines as Dendron"

# Chih-Yen Huang,<sup>a</sup> Yuhlong Oliver Su\*<sup>a,b</sup>

<sup>a</sup> Department of Applied Chemistry, National Chi Nan University, Nantou 545 Taiwan.

<sup>b</sup> Department of Chemistry, National Chung Hsing University, Taichung, 402 Taiwan.

E-mail: yosu@ncnu.edu.tw

Contents :

- A. <sup>1</sup>H NMR spectra
- B. Excitation spectra
- C. Tables of calculated numbers of electron transferred from spectroelectrochemistry



# A: <sup>1</sup>H NMR spectra



**Fig. 1** <sup>1</sup>H NMR of **3** in CDCl<sub>3</sub>.



Fig. 2<sup>1</sup>H NMR of 4 in CDCl<sub>3</sub>.

**B.** Excitation spectra



**Fig. 3** The absorption and excitation spectra of (A)  $2.5 \times 10^{-5}$  M **3** in CH<sub>2</sub>Cl<sub>2</sub>; (B)  $2.0 \times 10^{-6}$  M **4** in toluene. Excitation experiments were monitored at emission wavelength (A) 635; (B) 632 nm.

#### C. Tables of calculated numbers of electron transferred from spectroelectrochemistry

| Absorption peak (nm) | $E = -\frac{0.059}{n} \log \frac{A_o - A}{A - A_R} + E^0$ | п    | R square      |
|----------------------|-----------------------------------------------------------|------|---------------|
| 312                  | y = -0.061x + 0.423                                       | 0.97 | $R^2 = 0.993$ |
| 426                  | y = -0.047x + 0.411                                       | 1.26 | $R^2 = 0.961$ |
| 552                  | y = -0.051x + 0.444                                       | 1.16 | $R^2 = 0.971$ |
| 610                  | y = -0.056x + 0.407                                       | 1.05 | $R^2 = 0.914$ |
| 774                  | y = -0.057x + 0.435                                       | 1.04 | $R^2 = 0.990$ |
| 1354                 | y = -0.060x + 0.430                                       | 0.98 | $R^2 = 0.998$ |

**Table 1** The numbers of electron transferred (*n*) in Ox 1 of **4** was obtained from the plot of  $\log[(A_O - A)/(A - A_R)]^a$  vs. applied potential (*E*). Data is obtained from Fig. 6(D) in article.

<sup>a</sup>  $A_{O}$ ,  $A_R$  and A represent the absorbance of a peak at oxidative state, reductive state and an applied potential respectively.

**Table 2** The numbers of electron transferred (*n*) in Ox 2 of **4** was obtained from the plot of  $\log[(A_O - A)/(A - A_R)]^a$  vs. applied potential (*E*). Data is obtained from Fig. 6(E) in article.

| Absorption peak (nm) | $E = -\frac{0.059}{n} \log \frac{A_o - A}{A - A_R} + E^0$ | n    | R square      |
|----------------------|-----------------------------------------------------------|------|---------------|
| 298                  | y = -0.062x + 0.703                                       | 0.95 | $R^2 = 0.900$ |
| 426                  | y = -0.099x + 0.735                                       | 0.60 | $R^2 = 0.965$ |
| 556                  | y = -0.060x + 0.721                                       | 0.98 | $R^2 = 0.981$ |
| 592                  | y = -0.053x + 0.721                                       | 1.11 | $R^2 = 0.939$ |
| 1172                 | y = -0.068x + 0.716                                       | 0.87 | $R^2 = 0.986$ |
| 1500                 | y = -0.064x + 0.710                                       | 0.92 | $R^2 = 0.961$ |

<sup>a</sup>  $A_{O}$ ,  $A_{R}$  and A represent the absorbance of a peak at oxidative state, reductive state and an applied potential respectively.