[(NHC)CuX] Complexes: Synthesis, Structural Studies and Catalytic Activities in Hydrosilylation and Click Chemistry. On the Advantage of Using Well-Defined Catalytic Systems

Silvia Díez-González^{*a,d} Eduardo C. Escudero-Adán,^a Jordi Benet-Buchholz,^a Edwin D.

Stevens,^b Alexandra M. Z. Slawin,^c and Steven P. Nolan^{*a,e}

^a Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, 43007 Tarragona (Spain).

^b Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (USA).

^c School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST (UK)

^d Present Address: Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ (UK)

^ePresent Address: School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST (UK)

s.diez-gonzalez@imperial.ac.uk; snolan@st-andrews.ac.uk

Supporting Information

General Considerations	S2
Synthesis of [(NHC)CuX] Complexes	S2
Crystallographic Tables	S4
Catalytic Activity: Hydrosilylation of Ketones	S7
Catalytic Activity: [3+2] Cycloaddition of Azides and Alkynes	S9
References	S13

GENERAL CONSIDERATIONS

All reagents were used as received. Solid reagents for the preparation of [(NHC)CuX] complexes were stored under argon in a glovebox containing less than 1 ppm oxygen. Imidazolium and imidazolinium salts and free carbenes were synthesized according to literature procedures.¹ [(NHC)AgCl] complexes were prepared following the reported conditions.² ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz spectrometer at room temperature. Chemical shifts (δ) are reported with respect to tetramethylsilane as internal standard in ppm. Elemental analyses were performed by Robertson Microlit Laboratories, Inc., Madison, NJ (USA) and at the Centro de Microanálisis Elemental of the Universidad Complutense de Madrid (Spain). All reported yields are isolated yields and in the catalytic studies are the average of at least two runs.

[(NHC)CuX]		NHC source	Cu source [equiv]	Base [equiv]	Solvent [T]	Yield (%)	
[(IPr)CuCl]	1.	IPr.HC1	CuCl	NaOt-Bu	THF	94	
	14	IIIIICI	[1 equiv]	[1 equiv]	[RT]	74	
[(IPr)CuBr]	1b	IPr·HC1	CuBr	NaOt-Bu	THF	80	
	10	II I IICI	[1 equiv]	[1 equiv]	[RT]	00	
[(IPr)CuI]	1c	IPr·HC1	CuI	KOMe	Toluene	81	
[(III)Culj	10	in i nei	[1.1 equiv]	[1.2 equiv]	[RT]	01	
		SIPr·HC1	CuCl	KOMe	Toluene	80	
[(SIPr)CuCl]	2a	51111101	[1.1 equiv]	[1.4 equiv]	[RT]	00	
[(~11)0101]		[(SIPr)AgCl]	CuCl		MeCN	83	
			[5 equiv]	VOMa	[KI] Toluono		
[(SIPr)CuBr]	2b	SIPr·HC1	$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	[1 25 aquiv]		84	
			$\begin{bmatrix} 1.1 \text{ equiv} \end{bmatrix}$	[1.25 equiv]	[II3 C] McCN		
		[(SIPr)AgCl]	[5 equiv]		[RT]	84	
	2c	SIPr·HCl	Cul	KOMe	Toluene		
			[1.1 equiv]	[1.2 equiv]	[RT]		
[(SIPr)Cul]			CuI		MeCN	00	
		[(SIPr)AgCl]	[5 equiv]		[RT]	90	
	20	IA J.UDE	CuCl	KOMe	Toluene	01	
[(IAu)CuCI]	Ja	IAU IIDF4	[1.2 equiv]	[1.5 equiv]	[RT]	01	
[(IAd)CuBr]	3h	IAd-HBE.	$CuBr \cdot SMe_2$	KOMe	Toluene	81	
	50	IAU IIDI 4	[1.2 equiv]	[1.4 equiv]	[115°C]	01	
[[IIAd]]CuI]	30	IAd HBF4	CuI	KOMe	Toluene	75	
[(IIII)Culj	50	17 W 11D1 4	[1.5 equiv]	[1.5 equiv]	[RT]	15	
[(IMes)CuCl]	4 a	IMes·HC1	CuCl	NaOt-Bu	THF	64	
			[1.1 equiv]	[1 equiv]	[RT]	.	
[(IMes)CuBr]	4b	IMes·HCl	CuBr	NaOt-Bu	THF	62	
	υ		[1.4 equiv]	[1 equiv]	[RT]	-	

Table 1. SYNTHESIS OF [(NHC)CuX] COMPLEXES

Table 1. (cont.)

		NHC source	Cu source	Base [equiv]	Solvent	Yield (%)	
			[equiv]	Ease [equit]	[1]	(, •)	
[(SIMes)CuCl]	59	SIMes-HC1	CuCl	NaOt-Bu	THF	70	
	Ja	Shires her	[1 equiv]	[1 equiv]	[RT]	70	
[(SIMos)CuBr]	5h	SIMes.HCl	CuBr	NaOt-Bu	THF	71	
	50	SINCSTICT	[1.4 equiv]	[1 equiv]	[RT]	/ 1	
		ICv.UDF	CuCl	NaOt-Bu	THF	76	
	60	ІСу ПБГ4	[1 equiv]	[1 equiv]	[RT]	/0	
[(ICy)CuCI]	oa	ICu	CuCl		THF	71	
		iCy	[1 equi]		[RT]	/ 1	
	<u>A</u>	IC.	CuBr		THF	82	
[(ICy)CuBr]	OD	ICy	[1 equi]		[RT]		
	6		CuI		THF	82	
	00	iCy	[1 equi]		[RT]		
	-	LD	CuCl		THF	72	
[(ItBu)CuCl]	7 a	ItBu	[1 equi]		[RT]	13	
[(I4D) CD 1	71.	I4D.	CuBr		THF	05	
[(Itru)Curl]	/ D	ItBu	[1 equi]		[RT]	83	
	-	LD	CuI		THF	80	
[(ItBu)Cul]	/c	ItBu	[1 equi]		[RT]		

CRYSTALLOGRAPHIC TABLES

	[(IPr)CuCl] 1a ^[a]	[(IPr)CuBr] 1b	[(IPr)CuI] 1c	[(SIPr)CuCl] 2a ^[b]	[(SIPr)CuI] 2c	[(IAd)CuCl] 3a
Cu(1)–C(1)	1.953(8)	1.884(2)	1.869(8)	1.896(7)	1.8874(17)	1.894(2)
N(1)-C(1)	1.320(7)	1.352(2)	1.364(7)	1.337(6)	1.3322(14)	1.361(3)
N(2)-C(1)	1.320(7)	1.352(2)	1.364(7)	1.337(6)	1.3322(14)	1.365(2)
C(2)–C(3)	1.368(15)	1.352(2)	1.368(11)	1.511(12)	1.533(3)	1.355(3)
Cu(1)–X	2.089(4)	2.2090(4)	2.3803(10)	2.114(2)	2.3804(2)	2.1114(6)
N(1)-C(1)-N(2)	108.9(8)	104.5(2)	103.6(6)	108.0(6)	108.58(14)	104.56(17)
C(1)–Cu(1)–X	180.0	180.0	180.0	174.4(2)	180.0	177.39(6)

	[(IAd)CuBr] 3b	[(IMes)CuCl] 4a	[(IMes)CuBr] 4b ^[c]	[(SIMes)CuCl] 5a ^[d]	[(SIMes)CuBr] 5b	[(ICy)CuCl] 6a ^[d]
Cu(1)–C(1)	1.912(6)	1.956(10)	1.897(6)	1.882(4)	1.884(7)	2.114(11)
N(1)-C(1)	1.350(8)	1.310(8)	1.343(5)	1.332(5)	1.323(10)	1.284(11)
N(2)-C(1)	1.365(8)	1.310(8)	1.343(5)	1.341(5)	1.345(9)	1.280(11)
C(2)–C(3)	1.367(9)	1.399(12)	1.372(9)	1.519(7)	1.510(11)	1.260(19)
Cu(1)–X	2.2386(12)	2.091(2)	2.2101(7)	2.0990(11)	2.1903(14)	2.136(6)
N(1)-C(1)-N(2)	105.0(5)	109.3(8)	105.1(5)	108.2(3)	108.7(6)	111.4(14)
C(1)–Cu(1)–X	177.02(17)	180.000(1)	180.0	178.48(13)	177.7(2)	170.6(3)

^[a] Data from ref. [3]; ^[b] Data from ref. [4]. ^[c] Data from ref. [5]. ^[d] Data from ref. [6].

Table 3. Selected Bond Lengths (Å) and Angles (deg) for Complexes 3c, and 6c.

	[(IAd)CuI] 3c	[(ICy)CuBr] 6b	[(ICy)CuI] 6c		[(IAd)CuI] 3c	[(ICy)CuBr] 6b	[(ICy)CuI] 6c
Cu(1)–C(1)	1.9463(12)	2.022(16)	1.927(8)	Cu(3)–X(3)		2.503(3)	2.8509(13)
N(1)–C(1)	1.3653(14)	1.37(3)	1.349(10)	Cu(1)–Cu(2)	2.9510(3)		2.4528(15)
N(2)–C(1)	1.3625(15)	1.38(2)	1.359(10)	Cu(1)–Cu(3)		2.503(3)	
Cu(1)–X(1)	2.62654(19)	2.471(3)	2.5487(11)	Cu(2)–Cu(3)		2.767(5)	2.5332(14)
Cu(2)–C(2)		1.86(2)	1.973(8)	N(1)-C(1)-N(2)	104.60(10)	104.8(14)	104.2(7)
Cu(1)–C(2)			2.165(8)	N(3)-C(2)-N(4)		109(2)	103.6(6)
N(3)–C(2)		1.37(3)	1.373(10)	N(5)-C(3)-N(6)			107.1(7)
N(4)–C(2)		1.39(3)	1.369(10)	Cu(1)–C(1)–Cu(3)		75.3(6)	
Cu(2)–X(2)		2.199(5)	2.6206(12)	Cu(1)–C(2)–Cu(2)			72.5(3)
Cu(3)–C(1)		2.08(2)	1.928(8)	C(1)–Cu(1)–X(1)	131.91(3)	124.6(6)	128.2(2)
N(5)–C(3)			1.355(10)	C(2)–Cu(2)–X(2)		140.7(7)	128.9(2)
N(6)–C(3)			1.355(10)	C(3)–Cu(3)–X(3)			110.5(3)

	[(IPr)CuBr] 1b	[(IPr)CuI] 1c	[(SIPr)CuI] 2c	[(IAd)CuCl] 3a	[(IAd)CuBr] 3b
chemical formula	C ₂₇ H ₃₆ BrCuN ₂	C ₂₇ H ₃₆ CuIN ₂	C ₂₇ H ₃₈ CuIN ₂	C ₂₃ H ₃₂ ClCuN ₂	$C_{23}H_{32}BrCuN_2$
M (g/mol)	532.03	579.02	581.03	435.50	479.96
<i>T</i> (K)	150(2)	150(2)	100(2)	100(2)	100(2)
crystalline system	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic
space group	Pccn	Pccn	Pccn	<i>Pca2(1)</i>	Pna2(1)
<i>a</i> (Å)	10.7030(4)	10.9153(7)	10.9969(3)	14.7293(6)	11.5621(5)
<i>b</i> (Å)	12.7140(5)	12.6813(8)	12.5666(3)	21.9562(8)	26.7715(12)
<i>c</i> (Å)	19.4880(7)	20.1285(12)	19.9092(5)	12.4897(6)	6.4838(3)
α (deg)	90.00	90.00	90.00	90.00	90.00
β (deg)	90.00	90.00	90.00	90.00	90.00
γ(deg)	90.00	90.00	90.00	90.00	90.00
$V(\text{\AA}^3)$	2651.89(17)	2786.2(3)	2751.32(12)	4039.2(3)	2006(16)
Z	4	4	4	8	4
density(calcd) (g.cm ⁻³)	1.333	1.380	1.403	1.432	1.588
absorp coeff (mm ⁻¹)	2.346	1.907	1.931	1.224	3.090
<i>F</i> (000)	1104	1176	1184	1840	992
crystal size (mm)	0.65×0.45×0.20	0.40×0.35×0.35	0.40×0.40×0.20	0.40×0.40×0.10	0.30×0.20×0.02
θ (deg)	2.49 - 30.50	2.02 - 22.49	3.87 - 39.79	2.83 - 37.07	2.88 - 36.37
index range <i>hkl</i>	±15	±11	-18 to 19	±24	-15 to 19
	±18	±13	-19 to 20	-30 to 36	-42 to 44
	±27	±21	-12 to 35	-6 to 21	-5 to 10
data/restraints/params	4052/130/214	1821/130/181	7571/0/142	13057/1/487	6889/1/245
goodness-of-fit on F^2	1.092	1.098	1.069	0.987	1.185
Final R values	$R_1 = 0.0352$	$R_1 = 0.0416$	$R_1 = 0.0321$	$R_1 = 0.0369$	$R_1 = 0.0423$
[I>2sigma(I)]	$wR_2 = 0.0931$	$wR_2 = 0.1013$	$wR_2 = 0.0818$	$wR_2 = 0.0811$	$wR_2 = 0.0761$
R values (all data)	$R_1 = 0.0486$	$R_1 = 0.0492$	$R_1 = 0.0481$	$R_1 = 0.0562$	$R_1 = 0.0946$
	$wR_2 = 0.1056$	$wR_2 = 0.1013$	$wR_2 = 0.0890$	$wR_2 = 0.0893$	$wR_2 = 0.2223$

Table 4. Crystallographic Data for 1b-c, 2c, 3a-c, 4a, 5b, and 6b-c.

Table 4. (cont.)

	[(IAd)CuI] 3c	[(IMes)CuCl] 4a	[(SIMes)CuBr] 5b	[(ICy)CuBr] 6b	[(ICy)CuI] 6c
chemical formula	$C_{46}H_{64}Cu_2I_2N_4$	C ₂₁ H ₂₄ ClCuN ₂	$C_{21}H_{26}BrCuN_2$	$C_{30}H_{48}Br_{3}Cu_{3}N_{4}$	C _{48.5} H _{78.5} Cu ₃ I ₃ N ₇
M (g/mol)	1053.89	403.41	449.89	895.07	1331.00
<i>T</i> (K)	100(2)	150(2)	93(2)	93(2)	93(2)
crystalline system	triclinic	orthorhombic	monoclinic	monoclinic	monoclinic
space group	P1	Fdd2	P2(1)/n	P2(1)/c	P2(1)/c
<i>a</i> (Å)	9.6305(2)	14.694(3)	8.348(2)	12.051(5)	12.542(2)
<i>b</i> (Å)	9.9465(2)	28.998(5)	21.934(6)	23.197(10)	17.245(3)
<i>c</i> (Å)	11.4681(3)	9.4788(17)	11.275(3)	12.516(5)	26.111(5)
α (deg)	73.5890(10)	90.00	90.00	90.00	90.00
β (deg)	81.0420(10)	90.00	90.127(9)	92.761(12)	100.885(8)
γ(deg)	88.3730(10)	90.00	90.00	90.00	90.00
$V(Å^3)$	1040.78(4)	4038.8(13)	2064.5(9)	3495(3)	5546.0(17)
Z	1	8	4	4	4
density(calcd) (g.cm ⁻³)	1.681	1.327	1.447	1.319	1.594
absorp coeff (mm ⁻¹)	2.543	1.219	2.999	5.264	2.847
<i>F</i> (000)	532	1680	920	1792	2658
crystal size (mm)	0.50×0.40×0.40	0.30×0.20×0.15	0.06×0.06×0.03	0.15×0.15×0.02	0.03×0.03×0.03
θ (deg)	3.00 - 39.91	2.65 - 25.00	2.59 - 25.35	1.91 – 25.32	2.29 - 25.35
index range hkl	±16	±17	±10	-14 to 12	-13 to 14
	-17 to 15	±34	-26 to 19	-27 to 24	-20 to 16
	±20	±11	-13 to 11	±15	-24 to 31
data/restraints/params	10904 / 0 / 244	1784/34/130	3739/0/233	6339/0/363	9944/0/544
goodness-of-fit on F^2	1.032	1.057	1.067	1.381	1.032
Final R values	$R_1 = 0.0273$	$R_1 = 0.0321$	$R_1 = 0.0755$	$R_1 = 0.1628$	$R_1 = 0.0609$
[I>2sigma(I)]	$wR_2 = 0.0742$	$wR_2 = 0.0927$	$wR_2 = 0.1771$	$wR_2 = 0.4124$	$wR_2 = 0.1178$
R values (all data)	$R_1 = 0.0296$	$R_1 = 0.0404$	$R_1 = 0.1162$	$R_1 = 0.2312$	$R_1 = 0.1032$
	$wR_2 = 0.0760$	$wR_2 = 0.0987$	$wR_2 = 0.1966$	$wR_2 = 0.4486$	$wR_2 = 0.1331$

CATALYTIC ACTIVITY: HYDROSILYLATION OF KETONES

General Procedure for the [(SIMes)CuCl]-Catalyzed Hydrosilylation of Ketones

In a vial fitted with a septum screw cap, [(SIMes)CuCl] **5a** (8 mg, 0.02 mmol, 2 mol %) and sodium *tert*butoxide (2.5 mg, 2 mol %) were charged inside a glove box and stirred in dry THF (1 mL) at the reaction outside of the glove box for 5 minutes before adding triethylsilane (0.2 mL, 1.2 mmol, 1.2 equiv) through the septum using a syringe. After 5 more minutes of stirring, the ketone (1 mmol) was added. When the starting material was a solid, it was added as a solution in THF. The reaction was monitored by GC, after consumption of the starting material or no further conversion, the reaction mixture was opened to air and filtered through a plug of active charcoal and celite using DCM as solvent. The organic phase was concentrated *in vacuo* and the purity of the residue established by GC and ¹H NMR analyses. Flash chromatography was then performed unless crude product was estimated to be greater than 95% pure.

Synthesis and Characterization of Silyl Ethers

(Cyclohexyloxy)triethysilane (Table 7, entry 1)

OSiEt₃ Using the general procedure at room temperature, cyclohexanone (0.100 mL, 1 mmol) was hydrosilylated by triethylsilane. The residue was purified by flash chromatography on silica gel (pentane) to afford 0.199 g (93% yield) of the title compound as a colorless

oil. Spectroscopic data were consistent with previously reported data for this compound.⁷

(2-Methylcyclohexyloxy)triethylsilane (Table 7, entry 2)

Using the general procedure at room temperature, 2-methylcyclohexanone (0.121 mL, 1 mmol) was hydrosilylated by triethylsilane. The residue was purified by flash

chromatography on silica gel (pentane) to afford the title compound as a colorless oil and in a mixture 78:22 of *trans:cis* diastereoisomers (0.218 g, 95% yield). Spectroscopic data were consistent with previously reported data for this compound.⁸

(1-Phenylpropoxy)triethylsilane (Table 7, entry 3)

OSiEt₃

Using the general procedure at room temperature, propiophenone (0.133 mL, 1 mmol) was hydrosilylated by triethylsilane. The residue was purified by flash chromatography on silica gel (pentane) to afford 0.241 g (96% yield) of the title

OSiEt₃

compound as a colorless oil. Spectroscopic data were consistent with previously reported data for this compound.³

[1-(Naphthalen-2-yl)ethoxy]triethylsilane (Table 7, entry 4)

Using the general procedure at room temperature, 2'-acetonaphtone (0.170 g,

1 mmol) was hydrosilylated by triethylsilane. The residue was purified by

flash chromatography on silica gel (pentane) to afford 0.259 g (90% yield) of the title compound as a colorless oil.

OSiEt₃

OSiEt₃

OSiEt₃

CI

¹H NMR (400 MHz, CDCl₃): $\delta = 7.96-7.73$ (m, 4H, C^{Ar}), 7.67-7.48 (m, 3H, C^{Ar}), 5.12 (q, J = 6.3 Hz, 1H, CH–CH₂), 1.60 (d, J = 6.3 Hz, 3H, CH–CH₂), 1.03 (t, J = 8.0 Hz, 9H, SiCH₂CH₂), 0.78–0.62 ppm (m, 6H, SiCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 144.4$ (C, C^{Ar}), 133.3 (C, C^{Ar}), 132.7 (C, C^{Ar}), 127.9 (CH, C^{Ar}), 127.8 (CH, C^{Ar}), 127.6 (CH, C^{Ar}), 125.8 (CH, C^{Ar}), 125.4 (CH, C^{Ar}), 124.0 (CH, C^{Ar}), 123.4 (CH, C^{Ar}), 70.7 (CH, CH–CH₃), 27.2 (CH₃, CH–CH₃), 6.8 (CH₃, CH₂–CH₃), 4.8 ppm (CH₂, CH₂–CH₃). Elemental analysis calcd (%) for C₁₈H₂₆OSi (286.18): C, 75.46; H, 9.15; found: C, 75.81; H, 9.36.

(Diphenylmethoxy)triethylsilane (Table 7, entry 5)

(A) Using the general procedure at 80°C, benzophenone (0.182 g, 1 mmol) was hydrosilylated by triethylsilane. A colorless oil was obtained as the pure product after concentration of the filtrate (0.294 g, 98% yield). (B) Using the general procedure at

room temperature, benzophenone (0.182 g, 1 mmol) at room temperature was hydrosilvlated by triethylsilane. A colorless oil was obtained as the pure product after concentration of the filtrate (0.293 g, 98% yield). Spectroscopic data were consistent with previously reported data for this compound.⁶

(Dicyclopropylmethoxy)triethylsilane (Table 7, entry 6). Using the general procedure at 80°C, dicyclopropyl ketone (0.114 mL, 1 mmol) was hydrosilylated by triethylsilane. The crude product was purified by flash chromatography on silica gel (pentane/Et₂O : 80/20) to afford 0.209 g the title compound as a colorless oil (92% yield). Spectroscopic data were consistent with previously reported data for this compound.⁶

[1-(2-Chlorophenyl)ethoxy]triethylsilane (Table 7, entry 7)

Using the general procedure at 80°C, 2'-chloroacetophenone (0.130 mL, 1 mmol) was hydrosilylated by triethylsilane. The crude product was purified by flash chromatography on silica gel (pentane) to afford 0.247 g (91% yield) of the title compound as a colorless oil. Spectroscopic data were consistent with previously reported data for this compound.⁶

~	O ↓	[(NHC)CuX] (3 mol %), NaO <i>t</i> -Bu (12 mol %)					Et ₃
	N	Et ₃ SiH (3 equiv), Toluene, RT					
[(NHC)CuX]		Time (h)	Conv. (%) ^[a]	[(NHC)CuX]		Time (h)	Conv. (%) ^[a]
[(IPr)CuCl]	1 a	23	>99	[(IMes)CuCl]	4 a	0.5	>99
[(IPr)CuBr]	1b	24	90	[(IMes)CuBr]	4 b	0.75	>99
[(IPr)CuI]	1c	23	89	[(SIMes)CuCl]	5a	0.5	>99
[(SIPr)CuCl]	2a	24	92	[(SIMes)CuBr]	5b	0.5	>99
[(SIPr)CuBr]	2b	24	64	[(ICy)CuCl]	6a	0.5	>99
[(SIPr)CuI]	2c	24	66	[(ICy)CuBr]	6b	1	91
[(IAd)CuCl]	3a	2	>99	[(ICy)CuI]	6c	4	>99
[(IAd)CuBr]	3 b	5	>99	[(ItBu)CuCl]	7a	23	95
[(IAd)CuI]	3c	24	>99	[(ItBu)CuBr]	7b	23	94
				[(ItBu)CuI]	7c	23	91

Catalyst Screening for the Hydrosilylation of 2-Acetylpyridine

^[a]GC conversions are the average of at least two independent runs.

CATALYTIC ACTIVITY: [3+2] CYCLOADDITION OF AZIDES AND ALKYNES

Synthesis of Azides

Alkyl azides were synthesized at room temperature from the corresponding bromides by nucleophilic substitution with sodium azide in DMSO.⁹

Benzyl azide

From benzyl bromide (3.6 mL, 30 mmol) and following the Alvarez procedure⁹ N_3 (reaction time = 1 h), 3.77 g of the title compound were isolated as a light yellow oil after extraction (94%). Spectroscopic data were consistent with previously reported data for this compound.⁹

(2-Azidomethyl)benzene

From (2-bromoethyl)benzene (4.0 mL, 30 mmol) and following the Alvarez procedure⁹ (reaction time = 5 h), 4.14 g of the title compound were isolated as a light yellow oil after extraction (94%). Spectroscopic data were consistent with previously reported data for this compound.^{10,11}

1-Azidoheptane

 N_3 From 1-bromoheptane (4.7 mL, 30 mmol) and following the Alvarez procedure⁹ (reaction time = 5 h), 3.71 g of the title compound were isolated as a light yellow oil after extraction (88%). Spectroscopic data were consistent with previously reported data for this compound.¹⁰

2-(2-Azidoethyl)-1,3-dioxolane

From 2-(2-bromoethyl)-1,3-dioxolane (1.34 mL, 10 mmol) and following the Alvarez procedure⁹ (reaction time = 14 h), 1.41 g of the title compound were isolated as a light yellow oil after extraction (99%). Spectroscopic data were consistent with previously reported data for this compound.^{10,12}

General Procedure for the [(NHC)CuX]-Catalyzed [3+2] Cycloaddition of Azides and Alkynes

In a vial fitted with a screw cap, azide (1.0 mmol), alkyne (1.1 mmol) and [(NHC)CuX] (4.4 mg if 3c, or 3.6 mg if 5b) were loaded. The reaction was allowed to proceed at room temperature and monitored by ¹H NMR or GC analysis of aliquots. After total consumption of the starting azide, the solid product was simply dissolved in EtOAc and concentrated or alternatively collected by filtration and washed with pentane. In all examples, the crude products were estimated to be greater than 95% pure by ¹H NMR. Reported yields are isolated yields and are the average of at least two independent runs.

Synthesis and Characterization of [1,2,3]*-triazoles*

1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (Table 9, entry 1)

Using the general procedure from 0.125 mL of benzyl azide, 0.11 mL of phenylacetylene and 3c, and after 10 min of reaction, 0.232 g of the title compound were isolated as a white solid after evaporation of EtOAc (99% yield). Spectroscopic data were consistent with previously reported data for this compound.¹³

1-Benzyl-4-butyl-1*H*-1,2,3-triazole (Table 9, entry 2)

Using the general procedure from 0.125 mL of benzyl azide, 0.118 mL of 1-hexyne and 3c, and after 90 min of reaction, 0.202 g of the title compound were isolated as a white solid after evaporation of EtOAc (95% yield). Spectroscopic data were consistent with previously reported data for this compound.¹⁴

2-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)propan-2-ol (Table 9, entry 3)

(A) Using the general procedure from 0.125 mL of benzyl azide, 0.102 mL of 2-methylbut-3-yn-2-ol and **3c**, and after 2 h of reaction, 0.200 g of the title compound were isolated as a white solid after washing with pentane (92% yield). (B) Using the general procedure from 0.125 mL of benzyl azide, 0.102 mL of 2-methylbut-3-yn-2-ol and **5b**, and after 18 h of

reaction, 0.166 g of the title compound were isolated as a white solid after washing with pentane (76% yield). Spectroscopic data were consistent with previously reported data for this compound.¹³

1-Benzyl-4-(trimethylsilyl)-1*H*-1,2,3-triazole (Table 9, entry 4)

Using the general procedure from 0.125 mL of benzyl azide, 0.146 mL of trimethylsilylacetylene and 3c, 0.220 g of the title compound was isolated as an off-white solid after extraction with diethyl ether (95% yield). Spectroscopic data were consistent with previously reported data for this compound.¹³

2-(1-Phenethyl-1*H*-1,2,3-triazol-4-yl)propan-2-ol (Table 9, entry 5)

Using the general procedure from 0.147 g of (2-azidoethyl)benzene, 0.102 mL of 2-methylbut-3-yn-2-ol and **3c**, 0.202 g of the title compound was isolated as a white solid after filtration (92% yield).

Spectroscopic data were consistent with previously reported data for this compound.¹⁰

4-Butyl-1-heptyl-1*H*-1,2,3-triazole (Table 9, entry 6)

Using the general procedure from 0.141 g of 1azidoheptane, 0.12 mL, of 1-hexyne and **3c**, 0.205 g of the title compound were isolated as a light yellow oil after

extraction with ethyl acetate (98% yield). Spectroscopic data were consistent with previously reported data for this compound.⁴

4-tert-Butyl-1-heptyl-1H-1,2,3-triazole (Table 9, entry 7)

Using the general procedure from 0.141 g of 1-azidoheptane, 0.13 mL of 3,3-dimethylbut-1-yne and 3c, 0.215 g of the title

compound was isolated as a light yellow oil after extraction with ethyl acetate (96% yield). Spectroscopic data were consistent with previously reported data for this compound.¹⁰

Ethyl 1-(2-(1,3-dioxolan-2-yl)ethyl)-1*H*-1,2,3-triazole-4-carboxylate (Table 9, entry 8)

Using the general procedure from 0.143 g of 2-(2-azidoethyl)-1,3dioxolane, 0.106 mL of ethyl propiolate and 3c, 0.214 g of the title compound was isolated as a light yellow oil after washing with pentane (93% yield). Spectroscopic data were consistent with

previously reported data for this compound.¹⁵

REFERENCES

1 A. J. Arduengo III, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall and M. Unverzagt, *Tetrahedron*, 1999, **55**, 14523–14534.

2 P. de Frémont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, B. Macdonald, J. A. C. Clyburne, C. D. Abernethy and S. P. Nolan, *Organometallics*, 2005, **24**, 6301–6309.

3 H. Kaur, F. K. Zinn, E. D. Stevens and S. P. Nolan, *Organometallics*, 2004, **23**, 1157–1160.

4 S. Díez-González, E. D. Stevens and S. P. Nolan, *Chem. Commun.*, 2008, 4747–4749.

J. Broggi, S. Díez-González, J. L. Petersen, S. Berteina-Raboin, S. P. Nolan and L. A. Agrofoglio, *Synthesis*, 2008, 141–148.

6 S. Díez-González, H. Kaur, F. K. Zinn, E. D. Stevens and S. P. Nolan, *J. Org. Chem.*, 2005, **70**, 4784–4796.

7 M. Onaka, K. Higuchi, H. Nanami and Y. Izumi, *Bull. Chem. Soc. Jpn.*, 1993, **66**, 2638–2645.

8 B. H. Lipshutz, C. C. Caires, P. Kunipers and W. Chrisman, *Org. Lett.*, 2003, **5**, 3085–3088.

9 S. G. Alvarez and M. T. Alvarez, *Synthesis*, 1997, 413–414.

10 S. Díez-González, A. Correa, L. Cavallo and S. P. Nolan, *Chem.–Eur. J*, 2006, **12**, 7588–7564.

11 M. Ito, K.-i. Koyakumaru, T. Ohta and H. Takaya, *Synthesis*, 1995, 376–378.

12 B. Carboni, M. Vaultier and R. Carrié, *Tetrahedron*, 1987, **43**, 1799–1810.

13 P. Apputkkuttan, W. Dehaen, V. V. Fokin and E. Van der Eycken, *Org. Lett.*, 2004, **6**, 4223–4225.

14 N. Candelon, D. Lastécouères, A. K. Diallo, J. Ruiz Aranzaes, D. Astruc and J.-M. Vincent, *Chem. Commun.*, 2008, 741–743.

15 S. Díez-González and S. P. Nolan, Angew. Chem, Int. Ed., 2008, 47, 8881–8884.