Synthesis of star-shaped oligothiophenes with an organosilicon core. Effects of the core structures on their hole mobility

Joji Ohshita,* Yosuke Hatanaka, Shigenori Matsui, Tomonobu Mizumo, Yoshihito Kunugi,* Yoshihito Honsho, Akinori Saeki, Shu Seki,* Julius Tibbelin, Henrik Ottosson* and Takae Takeuchi

Supplementary Information

Experimental details for the preparation of Si-linked star-shaped oligothiopehenes, HOMO's of the neutral as well as the SOMO(α)'s and LUMO(β)'s (the two mid-gap orbitals) of the radical cationic **2T**, **2T₂Si₂C**, and **2T₂Si₂Ge** from (U)B3LYP calculations, and cartesian coordinates for optimized geometries of all calculated model compounds.

Preparation of Si-linked star-shaped oligothiophenes

General

All reactions were carried out in dry nitrogen. Ether and THF were dried over sodium/benzophenone and distilled immediately before use. Toluene was distilled activated sieves from sodium and stored over molecular before use. Tris[(5'-bromo-2,2'-bithiophenyl)dimethylsilyl]methane⁴ was prepares as reported in the literature. Usual work-up described bellow includes hydrolysis of the reaction mixture with water, separation of the organic layer, extraction of the aqueous layer with chloroform, drying the combined organic layer and extracts over anhydrous magnesium sulfate, evaporation of the solvent, and subjecting the residue to silica gel column chromatography, in that order. NMR spectra were recorded on a JEOL model LA-400 spectrometer in CDCl₃ at ambient temperature (¹H, 400 MHz; ¹³C, 100 MHz). UV spectra were measured on a Shimadzu model UV-3150 spectrophotometer. MS spectra were measured on a JEOL model SX-102A spectrometer.

Tris[(ethylterthiophenyl)dimethylsilyl]methane (3T₃C)

To a solution of 0.50 g (1.4 mmol) of 5-bromo-5"-ethylthiophene in 20 mL of ether was added 0.92 mL (1.4 moL) of a 1.57 M *n*-butyllithium solution in hexane at -80°C and the mixture was stirred at room temperature for 3 hr. The resulting solution of ethylterthiophenyllithium was cooled at -80°C. To this was added 0.14 g (0.48 mmol) of tris(chlorodimethylsilyl)methane in 10 mL of ether and the mixture was stirred for 24

hr at room temperature. After usual work-up, sublimation of the crude product afforded 0.10 g (21% yield) of **3T**₃C as a yellow solid. mp 121-123°C. FAB-MS *m/z* 1012 (M⁺). ¹H NMR: δ 0.33 (s, 1H, HC), 0.38 (s, 18H, CH₃Si), 1.32 (t, 9H, *J* = 7.6 Hz, CH₃CH₂), 2.82 (br q, 6H, *J* = 7.6 Hz, CH₂CH₃), 6.66 (dt, 3H, *J* = 3.6, 1.0 Hz, ring H), 6.90-6.97 (m, 9H, ring H), 6.99 (d, 3H, *J* = 3.9 Hz, ring H), 7.07 (d, 3H, *J* = 3.3 Hz, ring H). ¹³C NMR: δ 2.57 (CH₃Si), 6.10 (HC), 15.84 (CH₃CH₂), 23.51 (CH₂CH₃), 123.27, 123.53, 124.11, 124.27, 124.42, 134.51, 134.52, 134.95, 136.68, 140.75, 142.40, 146.88 (ring carbons). Anal. Calcd for C₄₉H₅₂S₉Si₃: C, 58.05; H, 5.17. Found: C, 57.73; H, 5.31.

Tris[(ethylquarterthiophenyl)dimethylsilyl]methane (4T₃C)

A mixture of 0.23 g (0.25 mmol) of tris[(bromobithiophenyl)dimethylsilyl]methane, 0.35 g (0.73 mmol) of ethyl(tributylstannyl)bithiophene, 14 mg (0.013 mmol) of Pd(PPh₃)₄, 2.4 mg (0.013 mmol) of CuI, 20 mL of toluene was heated at 110°C for 72 hr. After usual work-up, recrystallization of the crude product from hexane gave 54 mg (17% yield) of **4T₃C** as a yellow solid. mp 146 – 149°C. ¹H NMR: δ 0.33 (s, 1H, HC), 0.40 (s, 18H, CH₃Si), 1.32 (t, 9H, *J* = 7.7 Hz, CH₃CH₂), 2.82 (q 6H, *J* = 7.7 Hz, CH₂CH₃), 6.67 (d, 3H, *J* = 3.3 Hz, ring H), 6.87 – 7.02 (m, 18H, ring H), 7.08 (d, 3H, *J* = 3.3 Hz, ring H). ¹³C NMR: δ 2.60 (CH₃Si), 15.82 (CH₃CH₂), 23.53 (CH₂CH₃), 123.39, 123.61, 124.00, 124.11, 124.15, 124.32, 124.51, 134.44, 134.97, 135.30, 136.01, 136.11, 136.75, 140.99, 147.03 (ring carbons), one carbon may overlap. Exact-MS (FAB) Calcd for C₆₁H₅₈S₁₂Si₃ (M⁺): 1258.0495. Found: 1258.0459.

Tetrakis[(bithiophenyl)dimethylsilyl]silane and germane

To a solution of bithiophenyllithium prepared from 0.98 g (4.0 mmol) of bromobithiophene and 2.4 mL (4.0 mmol) of a 1.66 M hexane solution of *n*-butyllithium in 10 mL of ether was added 0.42 g (1.0 mmol) of tetrakis(chlorodimethylsilyl)silane at -80°C and the resulting mixture was stirred at room temperature for 5 h. Usual work up of the mixture gave 0.20 g (22% yield) of tetrakis[(bithiophenyl)dimethylsilyl]silane as pale green viscous oil. ¹H NMR: δ 0.52 (s, 24H, CH₃Si), 6.83 (d, 4H, *J* = 3.6 Hz, ring H), 6.92 (dd, 4H, *J* = 3.6 Hz, 5.1 Hz, ring H), 7.04 (dd, 4H, *J* = 1.0 Hz, 3.6 Hz, ring H), 7.12 (d, 4H, *J* = 3.6 Hz, ring H), 7.16 (dd, 4H, *J* = 0.7 Hz, 5.1 Hz, ring protons). ¹³C NMR: δ 2.50 (CH₃Si), 123.84, 124.20, 124.93, 127.79, 135.91, 137.33, 139.20, 143.00 (ring carbons).

Tetrakis[(bithiophenyl)dimethylsilyl]germane was obtained as pale green viscous oil in 7% yield in a similar fashion to that above. FAB-MS m/z 966 (M⁺). ¹H NMR: δ 0.54 (s, 24H, CH₃Si), 6.85 (d, 4H, J = 2.9 Hz, ring H), 6.92-6.93 (m, 4H, ring

H), 7.04 (d, 4H, J = 3.9 Hz, ring H), 7.11 (d, 4H, J = 3.9 Hz, ring H), 7.16 (d, 4H, J = 3.9 Hz, ring H). ¹³C NMR: δ 2.89 (CH₃Si), 123.83, 124.21, 124.91, 127.80, 135.72, 137.35, 139.72, 142.91 (ring carbons).

Tetrakis[(bromobithiophenyl)dimethylsilyl]silane and germane

To a solution of 0.052 g (0.056 g) of tetrakis[(bithiophenyl)dimethylsilyl]silane in 10 mL of chloroform was added 0.040 g (0.22 mmol) of NBS at -40°C and the mixture was stirred at this temperature for 2 h. Usual work up of the mixture gave 53 mg (77% yield) of the tetrakis[(bromobithiophenyl)dimethylsilyl]silane as a pale green solid. mp 152-154°C. ¹H NMR: δ 0.52 (s, 24H, CH₃Si), 6.73 (d, 4H, *J* = 3.9 Hz, ring H), 6.82 (d, 4H, *J* = 3.6 Hz, ring H), 6.87 (d, 4H, *J* = 3.9 Hz, ring H), 7.04 (br d, 4H, *J* = 3.6 Hz, ring H). ¹³C NMR: δ 2.48 (CH₃Si), 111.00, 123.75, 124.96, 130.61, 135.83, 138.74, 139.68, 142.13 (ring carbons).

Tetrakis[(bromobithiophenyl)dimethylsilyl]germane was obtained as a pale green solid in 87% yield in a similar fashion to that above. mp 150-153°C. ¹H NMR: δ 0.53 (s, 24H, CH₃Si), 6.74 (d, 4H, *J* = 3.9 Hz, ring H), 6.83 (d, 4H, *J* = 3.9 Hz, ring H), 6.87 (d, 4H, *J* = 3.9 Hz, ring H), 7.04 (d, 4H, *J* = 3.9 Hz, ring H). ¹³C NMR: δ 2.88 (CH₃Si), 111.00, 123.74, 124.94, 130.62, 135.63, 138.75, 140.21, 142.03 (ring carbons).

Tetrakis[(ethylterthiophenyl)dimethylsilyl]silane (3T₄Si)

A mixture of 0.21 g (0.17 mmol) of tetrakis[(bromobithiophenyl)dimethylsilyl]silane, 0.27 g (0.68 mmol) of ethyl(tributylstannyl)thiophene, 10 mg (0.0083 mmol) of Pd(PPh₃)₄, 1.6 mg (0.0083 mmol) of CuI, and 20 mL of toluene was heated at 110°C for 72 hr. Usual work-up of the mixture gave 50 mg (22% yield) of **3T₄Si** as a yellow solid. mp 158 – 160°C. FAB-MS *m/z* 1360 (M⁺). ¹H NMR: δ 0.55 (s, 24H, CH₃Si), 1.32 (t, 12H, *J* = 7.6 Hz, CH₃CH₂), 2.82 (q 8H, *J* = 7.6 Hz, CH₂CH₃), 6.65 (d, 4H, *J* = 3.9 Hz, ring H), 6.80 – 6.96 (m, 16H, ring H), 7.10 (d, 4H, *J* = 3.3 Hz, ring H). ¹³C NMR: δ 2.53 (CH₃Si), 15.83 (CH₃CH₂), 23.53 (CH₂CH₃), 123.30, 123.68, 124.11, 124.50, 134.58, 134.54, 135.41, 135.87, 136.64, 139.15, 143.03, 146.85 (ring carbons). Anal. Calcd for C₆₄H₆₈S₁₂Si₅: C, 56.42; H, 5.03. Found: C, 56.24; H, 5.27.

Tetrakis[(ethylterthiophenyl)dimethylsilyl]germane (3T₄Ge)

A mixture of 0.082 g (0.064 mmol) of tetrakis[(bromobithiophenyl)dimethylsilyl]germane, 0.082 g (0.064 mmol) of ethyl(tributylstannyl)thiophene, 3.7 mg (0.0032 mmol) of Pd(PPh₃)₄, 0.6 mg (0.003 mmol) of CuI, and 5 mL of toluene was heated at 110°C for 72 hr. The usual work-up of teh mixture gave 15 mg (16% yield) of **3T₄Ge** as a yellow solid. mp 155 – 157°C. FAB-MS m/z 1406 (M⁺). ¹H NMR: δ 0.56 (s, 24H, CH₃Si), 1.32 (t, 12H, J = 7.6 Hz, CH₃CH₂), 2.82 (q 8H, J = 7.6 Hz, CH₂CH₃), 6.65 (d, 4H, J = 3.6 Hz, ring H), 6.83–6.95 (m, 16H, ring H), 7.10 (d, 4H, J = 3.3 Hz, ring H). ¹³C NMR: δ 2.92 (CH₃Si), 15.84 (CH₃CH₂), 23.53 (CH₂CH₃), 123.28, 123.68, 124.11, 124.48, 124.54, 134.53, 135.41, 135.67, 136.62, 139.66, 142.92, 146.85 (ring carbons). Exact-MS (FAB) Calcd for C₆₄H₆₈GeS₁₂Si₄ (M⁺): 1406.0258. Found: 1406.0262.

HOMO

 $SOMO(\alpha)$

 $\text{LUMO}(\beta)$

 $2T_2Si_2C$

2T

Fig S-1 HOMO's of the neutral as well as the SOMO(α)'s and LUMO(β)'s (the two mid-gap orbitals) of the radical cationic 2T, 2T₂Si₂C, and 2T₂Si₂Ge from (U)B3LYP calculations.

Table S-1 Cartesian coordinates for optimized geometries of the model compounds.

2T (trans) B3LYP/6-31G(d): -1104.81670 a.u. B3LYP/6-311+G(d,p): -1104. 94960 a.u. Point group: C_2 S-1.177091 1.855240 -0.226508 C 0.125293 0.714721 0.069009 C 1.309313 1.389537 0.271547 H 2.244062 0.882349 0.486158 C -0.105055 3.208725 -0.051546 H -0.487610 4.215983 -0.146767 C 1.177091 2.805913 0.201222 H 2.002710 3.494822 0.343350 C -0.125293 -0.714721 0.069009 C -1.309313 -1.389537 0.271547 H -2.244062 -0.882349 0.486158 S 1.177091 -1.855240 -0.226508 C -1.177091 -2.805913 0.201222 H -2.002710 -3.494822 0.343350 C 0.105055 -3.208725 -0.051546 H 0.487610 -4.215983 -0.146767

Radical cation of 2T (*trans*) calculated at the energy minimum of the ground state geometry.

B3LYP/6-311+G(d,p): -1104. 6704828 a.u. <*S*²> = 0.76351

2T (*trans*) optimized as a radical cation. B3LYP/6-31G(d): -1104.55562 a.u. $\langle S^2 \rangle = 0.76799$ B3LYP/6-311+G(d,p): -1104.67883 a.u. $\langle S^2 \rangle = 0.76463$ Point group: C_2 S 1.036724 1.964564 -0.000095 C -0.180046 0.679580 0.000103 C -1.481018 1.238566 -0.000042
H -2.380672 0.632692 0.000081
C -0.190808 3.162303 -0.000101
H 0.082572 4.210974 0.000004
C -1.481018 2.629923 0.000223
H -2.373073 3.244996 0.000341
C 0.180046 -0.679580 0.000103
C 1.481018 -1.238566 -0.000042
H 2.380672 -0.632692 0.000081
S -1.036724 -1.964564 -0.000095
C 1.481018 -2.629923 0.000223
H 2.373073 -3.244996 0.000341
C 0.190808 -3.162303 -0.000101
H -0.082572 -4.210974 0.000004

Neutral **2T** (*trans*) calculated at the energy minimum of the radical cation geometry.

B3LYP/6-311+G(d,p): -1104.9426004 a.u.

2T (cis)

B3LYP/6-31G(d): -1104.81497 a.u. B3LYP/6-311+G(d,p): -1104.94771 a.u. Point group: C_{2v}

\mathbf{S}	0.000000	1.628489	1.470764
С	0.000000	0.163673	0.503467
С	0.000000	0.485830	-0.838024
Η	0.000000	-0.261982	-1.623221
С	0.000000	1.886492	-1.088687
Η	0.000000	2.319044	-2.083392
С	0.000000	2.633519	0.057039
Η	0.000000	3.709959	0.161325
С	0.000000	-1.160876	1.100616
С	0.000000	-2.379454	0.453738

Η	0.000000	-2.472671	-0.626571
С	0.000000	-3.494760	1.337354
Η	0.000000	-4.526570	1.002831
\mathbf{S}	0.000000	-1.405974	2.838798
С	0.000000	-3.130856	2.655805
Η	0.000000	-3.765490	3.531498

$2T_2Si$

B3LYP/6-31G(d): -2577.80887 a.u. B3LYP/6-311+G(d,p): -2578.11771 a.u. Point group: C_1 S 5.62552 -2.13777 -0.88041 C 4.96473 -0.80939 0.06031 C 5.93465 -0.28812 0.88929 H 5.74316 0.5341 1.57063 C 7.17913 -1.97091 -0.12649 Н 7.98617 -2.63678 -0.40097 C 7.19156 -0.94825 0.78166 Н 8.06566 -0.67637 1.3634 C 3.58254 -0.40049 -0.09963 C 2.5265 -1.10081 -0.64319 H 2.62302 -2.11338 -1.02145 S 3.03932 1.18108 0.42603 C 1.30304 -0.37908 -0.62879 H 0.37145 -0.78468 -1.00995 C 1.3869 0.88194 -0.07663 Si 0.02624 2.16665 0.10892 C -1.61326 1.33768 -0.2749 C -2.37672 1.45266 -1.4187 H -2.08029 2.07062 -2.26044 C -3.57496 0.69053 -1.41045 H -4.27308 0.65636 -2.24051 C -3.75626 -0.02825 -0.24732 S -2.4215 0.26378 0.84857 C -4.84694 -0.91131 0.11912

C -4.88112 -1.89296 1.08603 H -4.02532 -2.13387 1.70778 S -6.39721 -0.81802 -0.70155 C -6.13064 -2.57066 1.166 H -6.33506 -3.37538 1.86382 C -7.04567 -2.1074 0.26103 H -8.06151 -2.44232 0.09998 C 0.28959 3.57383 -1.12391 H 0.28527 3.2116 -2.15796 H 1.25993 4.05424 -0.95102 H -0.48698 4.34143 -1.0263 C 0.02471 2.83716 1.87422 H -0.16407 2.04365 2.60604 H -0.75047 3.60206 1.99937 H 0.99012 3.29347 2.12457

Radical cation of $2T_2Si$ calculated at the energy minimum of the ground state geometry.

-B3LYP/6-311+G(d,p): -2577.86017 a.u. <*S*²> = 0.75689

2T₂Si optimized as a radical cation. B3LYP/6-31G(d): -2577.57007 a.u. $<S^2> = 0.76027$ B3LYP/6-311+G(d,p): -2578.11088 a.u. $<S^2> = 0.75678$ Point group: C1 Si -1.254693 2.527884 0.024842 Si 1.972487 2.215866 -0.039082 C 3.457881 1.100362 -0.376996 C 4.153070 0.939209 -1.558385 S 4.135177 0.028493 0.833593 C 5.197097 -0.022948 -1.507171 H 3.917176 1.500883 -2.456918 C 5.325756 -0.626793 -0.274471 H 5.824925 -0.275050 -2.355825

C 6.269010 -1.642107 0.151919	9
C 6.201983 -2.489540 1.236943	2
S 7.749871 -1.931441 -0.748348	
C 7.317348 -3.368114 1.34417	1
Н 5.364569-2.493696 1.92663	3
C 8.231669 - 3.191932 0.34241	6
Н 7.428084 -4.106186 2.13121	5
Н 9.159181 -3.723308 0.17697	7
C -2.740071 1.412362 0.36277	0
C -3.435221 1.251172 1.54417	7
S -3.417360 0.340480 -0.847810	
C -4.479264 0.289033 1.49296	1
H-3.199304 1.812825 2.44271	7
C -4.607970 -0.314767 0.260244	
H-5.107083 0.036926 2.34162	0
C -5.551271 -1.330033 -0.166161	
C -5.484290 -2.177440 -1.251206	
S -7.032121 -1.619346 0.734130	
C -6.599699 -3.055957 -1.358453	
H -4.646885 -2.181612 -1.940908	
C -7.514004 -2.879759 -0.356686	
H -6.710479 -3.793995 -2.145521	
H -8.441542 -3.411093 -0.191258	
C 1.922495 3.501582 -1.437413	3
Н 1.747643 3.039590 -2.41571	3
Н 1.115397 4.223825 -1.26669	7
H 2.864144 4.060701 -1.49173	2
C 2.243460 3.099323 1.62116	51
H 1.402740 3.761547 1.85964	40
H 2.345983 2.386538 2.4475'	78
H 3.155342 3.707590 1.59198	32
C -1.204744 3.813647 1.423133	2
H -1.029881 3.351693 2.40144	8
H -0.397667 4.535909 1.25239	5
H -2.146410 4.372740 1.47743	0
C -1.525659 3.411281 -1.635434	

H -1.628121 2.698468 -2.461835 H -2.437572 4.019503 -1.606299 C 0.294502 1.486374 -0.005820 H 0.309302 0.880379 -0.918929 H 0.309302 0.827711 0.870057	Η·	0.684965	4.073540 -	1.873906
H -2.437572 4.019503 -1.606299 C 0.294502 1.486374 -0.005820 H 0.309302 0.880379 -0.918929 H 0.309302 0.827711 0.870057	Η·	1.628121	2.698468 -2	2.461835
C0.2945021.486374 -0.005820H0.3093020.880379 -0.918929H0.3093020.8277110.870057	Η·	2.437572	4.019503 -	1.606299
H0.3093020.880379-0.918929H0.3093020.8277110.870057	С	0.294502	1.486374 -	0.005820
H 0.309302 0.827711 0.870057	Η	0.309302	0.880379 ·	0.918929
	Η	0.309302	0.827711	0.870057

Neutral $2T_2Si$ calculated at the energy minimum of the radical cation geometry. B3LYP/6-311+G(d,p): -2577.86904 a.u.

$2T_2Si_2$

B3LYP/6-31G(d): -2947.15607 a.u. B3LYP/6-311+G(d,p): -2947.51516 a.u. Point group: C_1 S 7.443219 0.782956 0.774431 C 6.195212 -0.083750 -0.107762 C 6.704392 -1.260319 -0.614012 Н 6.110958 -1.949367 -1.205622 C 8.618575 -0.445579 0.427701 Н 9.632449 -0.339454 0.789373 $C \quad 8.080034 \ \textbf{-} 1.464513 \ \textbf{-} 0.308658$ Н 8.645674 - 2.331619 - 0.632084 $C \quad 4.853170 \quad 0.453994 \ \textbf{-}0.218279$ C 4.415737 1.746592 -0.021942 H 5.082826 2.561340 0.240871 S 3.499221 -0.569177 -0.659559 C 3.019671 1.908016 -0.230404 H 2.518473 2.865265 -0.126599 $C \quad 2.352916 \quad 0.755760 \ \textbf{-}0.594137$ Si 0.508756 0.530503 -0.930731 Si -0.508830 -0.529325 0.931801 $C \quad \text{-}2.352867 \ \text{-}0.755218 \ 0.594957$ C -3.019326 -1.907954 0.232210 H -2.517921 -2.865206 0.129442

С	$-4.415385 - 1.747008 \ 0.023327$
Η	-5.082265 -2.562144 -0.238813
С	$-4.853106 - 0.454302 \ 0.218295$
\mathbf{S}	$-3.499442\ 0.569563\ 0.658851$
С	$-6.195226\ 0.083084 \ 0.106977$
С	$-6.704776 \ 1.259962 \ 0.612132$
Η	$-6.111637 \ 1.949603 \ 1.203347$
\mathbf{S}	-7.442819 -0.784591 -0.774846
С	$-8.080380\ 1.463626 0.306251$
Η	$-8.646283\ 2.330876\ 0.628825$
С	$-8.618514\ 0.443989$ -0.429433
Η	$-9.632270\ 0.337367$ -0.791290
С	0.228305 -2.255642 1.211270
Η	-0.242052 -2.747964 2.070689
Η	1.303752 -2.183874 1.410356
Η	0.098683 -2.904954 0.337882
С	$-0.288075\ 0.527422\ 2.492868$
Η	$-0.720324\ 0.025497$ 3.366636
Η	$-0.774949 \ 1.504752 \ 2.395947$
Η	0.775054 0.704734 2.693025
С	0.287419 -0.525771 -2.492024
Η	0.774537 -1.503038 -2.395700
Η	0.719105 -0.023454 -3.365845
Η	-0.775780 -0.703226 -2.691672
С	$-0.227927\ 2.257107$ -1.209663
Η	$-0.098394 \ 2.906048 \ -0.335985$
Η	$-1.303336\ 2.185660$ -1.409078
Η	0.242773 2.749663 -2.068761

Radical cation of $2T_2Si_2$ calculated at the energy minimum of the ground state geometry.

B3LYP/6-311+G(d,p): -2947.26745 a.u. $\langle S^2 \rangle = 0.75678$

2T₂Si₂ optimized as a radical cation. B3LYP/6-31G(d): -2946.92459 a.u. $<S^2> = 0.75913$ B3LYP/6-311+G(d,p): -2947.27351 a.u. $<S^{2}> = 0.75816$ Point group: C_{1} S 7.449671 1.014377 0.378372 C 6.152687 -0.108104 -0.022021 C 6.654227 -1.404360 - 0.120843Н 6.032165 -2.260307 -0.359590 C 8.605400 $-0.264943\ 0.404601$ H 9.641925 -0.047596 0.627492 $C \quad 8.040141 \quad \text{-}1.489850 \; 0.120625$ H 8.606603 -2.413147 0.089247 C 4.809367 0.344365 -0.201940 C 4.303884 1.640917-0.071157H 4.921136 2.489215 0.204746 S 3.520858 -0.750807 -0.676920 C 2.931238 1.731699 -0.339492 H 2.381009 2.665253 -0.285151 C 2.327080 0.524553 -0.700136Si 0.510678 0.216417 -1.068683 Si -0.510688 -0.216189 1.068759 C -2.327067 -0.524449 0.700202 C -2.931161 -1.731655 0.339656 H -2.380887 -2.665188 0.285409 C -4.303805 -1.640962 0.071287 Н -4.921013 -2.489316 -0.204549 C -4.809353 -0.344424 0.201943 S -3.520905 0.750853 0.676847 C -6.152691 0.107965 0.021961 C -6.654296 1.404204 0.120671 H -6.032281 2.260199 0.359367 S -7.449610 -1.014611 -0.378373 C -8.040209 1.489607 -0.120832

H -8.606717 2.412879 -0.089536

С	-8.605402 0.264650 -0.404725
Η	-9.641912 0.047236 -0.627620
С	$0.227739 -1.774384 \ 1.845234$
Η	-0.247743 - 1.984042 2.810225
Η	1.300631 -1.638661 2.022411
Η	0.106743 -2.658356 1.209852
С	$-0.330117 \ 1.288123 \ 2.199172$
Η	$-0.789786 \ 1.092681 \ 3.174989$
Η	$-0.799598\ 2.185323\ 1.780611$
Η	0.728755 1.514547 2.367261
С	0.330000 -1.287844 -2.199147
Η	0.799493 -2.185070 -1.780653
Η	0.789608 -1.092372 -3.174986
Η	-0.728887 -1.514242 -2.367172
С	0.227660 1.774687 -1.845095
Η	$-0.106652\ 2.658618$ -1.209659
Η	-1.300551 1.639017 -2.022320
Н	0.247866 1.984380 -2.810056

Neutral $2T_2Si_2$ calculated at the energy minimum of the radical cation geometry. B3LYP/6-311+G(d,p): -2947.51052 a.u.

$2T_2Si_3$ (<i>cis</i>)			
B3LYP/6-31G(d): -3316.50243 a.u.			
B3LYP/6-311	+G(d,p): -3	316.91107 a.u.	
Point group:	C_1		
C -2.744138	0.558303	1.367017	
C -3.896501	1.136295	1.859179	
H -3.881727	1.945144	2.582823	
C -5.102954	0.592738	1.341852	
H -6.090201	0.948277	1.619158	
C -4.900147 -	0.424291	0.433757	
S -3.180493 -	0.706727	0.235197	
C -5.878805 -	1.212783 -	0.289156	

C -5.706981 -1.996060 -1.410246
H -4.751108 -2.098056 -1.913075
S -7.554296 -1.272818 0.236684
C -6.902483 -2.631401 -1.851161
H -6.954611 -3.278508 -2.720040
C -7.983637 -2.332242 -1.068826
H -9.006062 -2.668459 -1.176608
Si -0.956544 1.011205 1.775225
Si 0.000205 2.274698 0.001289
C -0.000512 -0.581780 2.167070
H 1.051244 -0.368705 2.390940
H -0.020735 -1.289166 1.330172
H -0.438668 -1.085755 3.037085
C -1.016546 2.091250 3.339007
H -1.550583 3.033742 3.172407
H-1.512734 1.562496 4.161590
H-0.001060 2.342850 3.666447
C -1.370197 3.398848 -0.716751
H -0.977654 4.038085 -1.516656
H -1.783866 4.054699 0.058985
H -2.198900 2.811400 -1.126849
C 1.370792 3.397580 0.720944
H 1.784953 4.054151 -0.053918
C 2.744310 0.559844 -1.366950
C 3.896823 1.137160 -1.859549
H 3.882244 1.946030 -2.583170
C 5.103161 0.592880 -1.342702
Н 6.090507 0.947844 -1.620388
C 4.900110 -0.424026 -0.434525
S 3.180367 -0.705432 -0.235281
C 5.878566 -1.213049 0.288080
C 5.706645 -1.996253 1.409208
Н 4.750856 -2.097771 1.912295
S 7.553884 -1.273933 -0.238210
C 6.901943 -2.632195 1.849805
H 6.953976 -3.279329 2.718671

```
C 7.983042 -2.333568 1.067192
H 9.005328 -2.670295 1.174704
Si 0.956808 1.013715 -1.774495
H 2.199152 2.809357 1.130623
H 0.978232 4.036051 1.521452
C 0.000472 -0.578466 -2.168856
H 0.438719 -1.081345 -3.039459
H -1.051193 -0.364876 -2.392672
H 0.020355 -1.287017 -1.332933
C 1.017006 2.096363 -3.336461
H 0.001538 2.348669 -3.663425
H 1.513081 1.568993 -4.159999
H 1.551153 3.038508 -3.168248
```

 $2T_2Si_3$ (*cis*) calculated at the energy minimum of the ground state geometry. B3LYP/6-311+G(d,p): -3316.66384 a.u. $<S^2> = 0.75003$

2T₂Si₃ (*cis*) optimized as a radical cation. B3LYP/6-31G(d): -3316.27003 a.u. $<S^2> = 0.75697$ B3LYP/6-311+G(d,p): -3316.66873 a.u. $<S^{2}> = 0.75594$ Point group: C_{1} С 2.7626 0.52205 -1.32431С 3.8688 1.32493 -1.60207 Η $3.78908\ 2.25248$ -2.15894С 5.08932 0.82985 -1.11673 Η $6.04154\ 1.32945\ -1.26015$ С 4.963 -0.38178 -0.43575 \mathbf{S} 3.2768 -0.88177 -0.4248 С 5.98603 -1.17366 0.17204 С 5.86237 - 2.38526 0.84901Η $4.91023 \quad -2.88451 \quad 0.99272$ \mathbf{S} 7.67418 - 0.67212 0.13253С 7.08982 -2.89269 1.32131

Η	7.19266 -3.82221 1.86889
С	8.1562 -2.07633 1.01073
Η	9.20043 -2.22685 1.25187
Si	$0.96039\ 0.86768$ -1.7654
Si	$0.00002\ 2.17786\ 0.00006$
С	0.06947 -0.77553 -2.06849
Η	-0.9928 - 0.60846 - 2.2803
Η	0.1336 - 1.45273 - 1.20979
Η	0.50556 -1.29004 -2.93285
С	$0.95988 \ 1.91761 \ -3.34519$
Η	$1.48912\ 2.86834$ -3.21778
Η	$1.43341\ 1.37373$ -4.17052
Η	-0.0681 2.15209 -3.64378
С	$1.34468\ 3.28965\ 0.76552$
Η	$0.92013\ 3.92905\ 1.54825$
Η	$1.78106 \; 3.95027 \; 0.00668$
Η	$2.15992\ 2.70794\ 1.2087$
С	$-1.34463\ 3.28973$ -0.76532
Η	-1.78101 3.9503 -0.00643
С	$-2.76259\ 0.52198\ 1.32431$
С	$-3.86878\ 1.32486\ 1.60211$
Η	$-3.78905\ 2.25238\ 2.15902$
С	$-5.08931\ 0.82982\ 1.11676$
Η	$-6.04152\ 1.32941\ 1.26022$
С	-4.96301 -0.38178 0.43573
\mathbf{S}	-3.27681 -0.88177 0.4247
С	-5.98605 -1.17364 -0.17207
С	-5.86241 -2.3852 -0.84911
Η	-4.91027 -2.88444 -0.99288
\mathbf{S}	-7.6742 - 0.6721 - 0.13251
С	-7.08986 -2.89262 -1.32139
Η	-7.19272 -3.82211 -1.86902
С	-8.15625 -2.07628 -1.01074
Η	-9.20048 -2.22679 -1.25185
Si	$-0.96037\ 0.86756\ 1.76541$
Н	$-2.15988 \ 2.70806 \ -1.20855$

- Н -0.92008 3.92917 -1.54801
- C -0.06947 -0.77568 2.06839
- H -0.50556 -1.29024 2.93272
- Н 0.99281 -0.60864 2.28019
- Н -0.13362 -1.45282 1.20964
- C -0.95985 1.91738 3.34528
- $H = 0.06814\ 2.15183\ 3.64389$
- Н -1.43338 1.37344 4.17057
- H -1.48908 2.86812 3.21794

Neutral $2T_2Si_3$ (*cis*) calculated at the energy minimum of the radical cation geometry.

B3LYP/6-311+G(d,p): -3316. 90745 a.u.

- B3LYP/6-31G(d): -3316.50120 a.u. B3LYP/6-311+G(d,p): -3316.91008 a.u. Point group: *C*₁
- Si 1.972380 2.216178 -0.038688 Si -1.972411 2.216232 0.038704 С -3.457847 1.100734 0.376529С -4.153083 0.939738 1.557919 \mathbf{S} -4.134752 0.028333 -0.833788С -5.196913 - 0.022637 - 1.506875Η -3.917406 1.501734 2.456306С -5.325356 - 0.626841 - 0.274328-5.824782 - 0.274614 - 2.355536Η С -6.268409 - 1.642406 - 0.151897С -6.201193 -2.490037 -1.236754

\mathbf{S}	-7.749221 - 1.931877 0.748409
С	-7.316378 -3.368858 -1.343831
Η	-5.363766 -2.494170 -1.926427
С	-8.230792 -3.192613 -0.342172
Η	-7.426945 -4.107108 -2.130731
Н	-9.158226 - 3.724107 - 0.176677
С	3.457819 1.100693 -0.376533
С	4.153097 0.939760 -1.557906
\mathbf{S}	4.134714 0.028266 0.833767
С	5.196953 -0.022587 -1.506863
Η	3.917430 $1.501779 - 2.456281$
С	5.325372 -0.626833 -0.274333
Η	5.824857 - 0.274516 - 2.355512
С	6.268439 - 1.642390 0.151884
С	6.201210 -2.490063 1.236706
\mathbf{S}	7.749290 -1.931785 -0.748383
С	7.316415 -3.368858 1.343788
Η	$5.363760 \cdot 2.494245 1.926351$
С	8.230860 - 3.192547 0.342169
Η	7.426977 -4.107135 2.130663
Η	9.158315 - 3.724007 0.176685
С	-1.922745 3.502154 1.436867
Η	-1.747381 3.040430 2.415201
Η	-1.116151 4.224878 1.265823
Η	-2.864729 4.060703 1.491327
С	-2.243175 $3.099609 - 1.621622$
Η	-1.402463 3.761849 -1.860068
Η	-2.345672 2.386812 -2.448031
Η	-3.155071 3.707868 -1.592489
С	1.922696 $3.502121 - 1.436835$
Η	1.747441 $3.040401 - 2.415190$
Η	1.116022 4.224765 -1.265832
Η	2.864630 4.060761 -1.491222
С	2.243142 3.099550 1.621639
Η	1.402372 3.761700 1.860127
тт	

H 2.345751 2.386756 2.448036

3.154973 3.707903 1.592464Η 0.021020 -0.220180 С 1.5528420.892065 - 0.886177 - 1.548698Η Η -0.880653 - 0.842302 - 1.5928040.057477 0.371727 2.474829Η -0.021056 - 0.220189 - 1.552844С 0.880620 - 0.842317 - 1.592719 Η Η -0.057389 0.371721 - 2.474836-0.892101 - 0.886181 - 1.548811Η Si -0.000034 0.890031 -0.000005

 $2T_2Si_2Ge$ (cis) B3LYP/6-31G(d): -5102.03280 a.u. B3LYP/6-3l1+G(d,p): -5104.40553 a.u. Point group: C_1 Si 1.96029 -2.24294 -0.00464Si -1.97188 -2.161740.50233С -3.50288-1.167590.03707С -4.48752-1.48588 -0.87535 \mathbf{S} -3.8493 0.40633 0.72594С -5.49661 -0.49744 -1.02905H-4.48638 -2.41498 -1.43658 С -5.30439 0.6104 -0.23146H -6.33057 -0.59119 -1.71725 С -6.11948 1.80356 - 0.11305С -5.787253.0339 0.41213 \mathbf{S} -7.785681.81651-0.67096С -6.848983.98115 0.36185H-4.80127 3.25634 0.80615 -7.98769 3.47455-0.20134С H -6.76369 5.000070.72365H -8.93373 3.97132 -0.36943 С 3.46814 -1.16664 -0.35243 С 4.30425 -1.19489 -1.44998 3.98754 0.11339 0.72664 S

C 5.3482 -0.23147 -1.42699 H 4.17994 -1.90509 -2.26126 С 5.33153 0.56707 -0.30331 H 6.10141 -0.14266 -2.20332 С 6.23206 1.64047 0.06944С 6.42664 2.221341.30424 \mathbf{S} 7.27199 2.40113 -1.12505 С 3.25797.402711.2996H 5.89575 1.89922 2.19383 7.95183 3.4661 0.06445 C H 7.6882 3.81921 2.1827 H 8.71266 4.17948 -0.22229 С -2.05279 -3.79035 -0.46879H-1.97776 -3.63013 -1.55004 H -1.23217 -4.45456 -0.17352H-2.9922 -4.31987 -0.26936 C -1.98702 -2.52504 2.36681 H-1.08223 -3.06573 2.66939 H -2.03047 -1.599872.95275H -2.85562 -3.13468 2.64199C 2.17077 -3.09693 1.67877H 2.24604 -2.36769 2.49351 H 1.31905 -3.75248 1.89704 H 3.07998 -3.70938 1.69516 1.87128 -3.5366 -1.39071 C H 1.0311 -4.22096 -1.22767H 1.72968 -3.0689 -2.37153 H 2.78723 -4.138 -1.43212 Ge -0.01359 -0.86908 -0.01542 -0.18874 -0.05239 -1.79466С H 0.70168 0.54092 -2.02133 H-1.06703 0.59796 -1.82749 H -0.29656 -0.84509 -2.53970.15758 0.5666 1.32035С H 1.02376 1.19393 1.09252 H 0.28467 0.11744 2.30889

```
H-0.73676 1.19666 1.32051
```

Radical cation of $2T_2Si_2Ge$ (*cis*) calculated at the energy minimum of the ground state geometry.

B3LYP/6-311+G(d,p): -5104.16037 a.u. $\langle S^2 \rangle = 0.75467$

2T₂Si₂Ge (*cis*) optimized as a radical cation. B3LYP/6-31G(d): -5101.79898 a.u. $<S^2 > = 0.75726$ B3LYP/6-31+G(d,p): -5104.16809 a.u. $<S^{2}> = 0.75004$ Point group: C_{1} C -3.37335 -1.1587 0.01727 C -4.0381 -1.1334 -1.20991 Н -3.8201 -1.83943 -2.00426 C -5.01683 -0.13528 -1.32456 H -5.63397 0.0049 -2.20557 C -5.12959 0.66306 -0.18488 S -3.98557 0.12505 1.03366 C -6.02604 1.75286 0.05337 C -6.11763 2.57481 1.17214 H -5.47233 2.46622 2.03729 S -7.2286 2.22364 -1.14369 C -7.12563 3.55705 1.06741 H -7.34488 4.28646 1.83835 C -7.80727 3.49177 -0.12713 Н -8.6205 4.12113 -0.46419 Si -1.93976 -2.25668 0.51183 C -2.03644 -3.87853 -0.45251 Н -1.206 -4.53748 -0.17465 H -1.98846 -3.72428 -1.53581 H -2.96861 -4.40817 -0.22532 C -1.91295 -2.52669 2.38187 H -1.89343 -1.58113 2.93475

H -2.79945 -3.08586 2.70245 Н -1.02953 -3.10223 2.6798 C -0.23701 -0.23174 -1.96086 H 0.62255 0.38508 -2.23701 H -1.13742 0.3853 -2.02048 Н -0.32312 -1.07258 -2.65344 C 0.15133 0.59634 1.10658 H 1.01199 1.21117 0.82917 C 3.32125 -1.08652 -0.40051 C 3.72774 -0.61589 -1.6511 H 3.32131 -1.00371 -2.57941 C 4.71157 0.3825 -1.60854 H 5.14526 0.83927 -2.49168 C 5.08846 0.73312 -0.31078 S 4.1874 -0.22784 0.85056 C 6.06431 1.69362 0.10447 C 6.41116 2.0784 1.39592 H 5.94306 1.66073 2.28085 S 7.02918 2.58056 -1.07125 C 7.42312 3.06109 1.43725 H 7.82217 3.48331 2.35211 C 7.85371 3.4317 0.18286 H 8.61315 4.15938 -0.07167 Si 1.96051 -2.32063 -0.03614 H 0.28585 0.21605 2.12187 H -0.74538 1.22142 1.0656 C 2.1934 - 3.07952 1.67723 H 3.13433 -3.63966 1.72776 H 1.38058 -3.77845 1.90446 H 2.20963 -2.32129 2.46793 C 1.8943 -3.61642 -1.41022 H 1.05295 -4.30053 -1.2546 H 2.81313 -4.2134 -1.42367 H 1.77184 -3.16197 -2.39918 Ge -0.01846 -0.91039 -0.13443

 $2T_2Si_2Ge$ (*cis*) calculated at the energy minimum of the radical cation geometry. B3LYP/6-311+G(d,p):-5104.39933 a.u.

$2T_2Si_2Ge$ (<i>trans</i>)			
B3LYP/6-31G(d): -5102.03127 a.u.			
B3LYP/6-31+G(d,p): -5104.40416 a.u	ı.		
Point group: C_1			
Si 1.978087 2.241622 -0.004222			
Si -1.978318 2.241700 0.026767			
C -3.475925 1.141352 0.336855			
C -4.353816 1.164663 1.400933			
S -3.922000 -0.165434 -0.743087			
C -5.359473 0.161512 1.363255			
H -4.276608 1.888231 2.206335			
C -5.272105 -0.660563 0.260090			
H -6.114682 0.038278 2.132937			
С -6.115870 -1.778050 -0.115925			
C -5.864516 -2.792169 -1.014984			
S -7.709690 -1.983502 0.594132			
C -6.929835 -3.729765 -1.129878			
Н -4.932209 -2.871415 -1.564036			
C -7.990513 -3.431726 -0.319500			
Н -6.902161 -4.594377 -1.784162			
Н -8.920342 -3.971760 -0.202030			
C 3.475851 1.144494 -0.3250	79		
C 4.354385 1.179185 -1.3883	10		
S 3.921519 -0.173584 0.741257	7		
C 5.360188 0.175858 -1.3606	60		
H 4.277536 1.911230 -2.1860	53		
C 5.272274 -0.657870 -0.26632	24		
H 6.115870 0.060896 -2.1311	58		
C 6.115965 -1.779193 0.09827	4		
C 5.864123 -2.803014 0.986128	3		
S 7.710363 -1.976661 -0.61275	2		

C 6.929527	-3.741613	1.091671	
H 4.931412	-2.888356	51.533579	
C 7.990759	-3.434639	0.285364	
H 6.901519	-4.613258	31.736542	
Н 8.920780	-3.973201	0.162768	
C -1.923252	3.521226	1.427398	
H -1.771383	3.050497	2.405183	
H -1.099742	4.226871	1.267781	
H -2.852171	4.102317	1.472078	
C -2.172417	3.116620	-1.647953	
H -1.309335	3.757617	-1.863286	
H -2.261709	2.394380	-2.467490	
H -3.071452	3.744005	-1.658568	
$C \ 1.923834$	3.535742	-1.391408	
H 1.772423	3.075213	3 -2.374116	
H 1.100169	4.239610) -1.224843	
H 2.852726	4.117312	2 -1.429599	
C 2.171749	3.098951	1.679645	
H 1.308524	3.737482	1.901631	
H 2.261148	2.368170	2.491564	
H 3.070657	3.726367	1.696943	
Ge -0.000148 0	0.874621	0.003745	
C 0.000816 -0.275762 1.598768			
Н 0.860509-	0.951623	1.585725	
Н -0.915275 -0	.872189 1	.628236	
Н 0.048673	0.357591	2.488568	
C -0.001023 -	0.258827 -	1.603343	
Н 0.914979 -0.855071 -1.638774			
H -0.048470	0.383850 -2	.486452	
H -0.860844 -0.934628 -1.597671			

$2T_2Si_2C\;(\mathit{cis})$

B3LYP/6-31G(d): -2986.48303 a.u. B3LYP/6-311+G(d,p): -2986.85532 a.u. Point group: C₁

С	8.419920 -0.326501 -0.908393
Η	9.253707 $0.317241 - 1.166958$
С	8.477299 -1.691874 -0.962864
Η	9.308588 - 2.319317 - 1.254902
С	7.156027 $0.157650 - 0.465959$
Η	6.925675 1.210119 - 0.338874
С	6.249791 -0.841832 -0.184386
\mathbf{S}	6.973735 -2.414161 -0.484772
С	4.882562 -0.729973 0.286303
С	4.095186 -1.679319 0.901660
Η	4.447487 - 2.680212 1.129634
С	2.795835 -1.206624 1.230688
Η	2.054410 - 1.825977 1.725629
С	2.553023 0.105765 0.882547
\mathbf{S}	3.981034 0.763108 0.107752
Si	0.980460 1.114423 1.146782
С	1.398165 2.610951 2.228428
Η	1.803838 2.287064 3.193847
Η	0.514157 3.228075 2.426033
Η	2.151433 3.250928 1.753408
С	-0.253228 - 0.006675 2.037261
Η	0.159512 - 0.368029 - 2.986561
Η	-0.531425 - 0.876549 1.432747
Η	-1.178457 0.535361 2.263648
С	0.352218 $1.695370 - 0.548249$
Η	0.478825 $0.862603 - 1.255318$
Η	1.040395 $2.478689 - 0.901509$
Si	-1.410301 2.354488 -0.766052
С	-1.902455 3.598669 0.573449
Η	-1.904037 3.155744 1.575504
Η	-2.906753 3.998969 0.388383
Η	-1.210846 4.449861 0.585150
С	-1.546591 3.204011 -2.453802
Η	-2.569139 3.553109 -2.639829
Η	-1.276673 2.519904 -3.266587
Η	-0.879626 4.073441 -2.512756

С	-2.603521 0.895114 -0.708750
С	-2.413052 -0.392827 -1.165772
Η	-1.477498 -0.727879 -1.603937
С	-3.541151 -1.245349 -1.029736
Η	-3.557164 -2.279692 -1.357945
С	-4.630709 -0.622809 -0.457703
\mathbf{S}	-4.230648 1.040066 -0.077467
С	-5.941981 -1.166777 -0.161043
С	-7.123119 - 0.500589 0.085350
Η	-7.200997 0.581297 0.065598
С	-8.224396 - 1.366852 0.338536
Η	-9.230137 - 1.016900 0.544482
С	-7.883735 - 2.690300 0.283784
Η	-8.517593 - 3.554825 0.428038
\mathbf{S}	-6.197648 -2.902337 -0.066662

Radical cation of $2T_2Si_2C$ (*cis*) calculated at the energy minimum of the ground state geometry.

B3LYP/6-311+G(d,p): -2986.60314 a.u. <*S*²> = 0.75683

2T₂Si₂C (*cis*) optimized as a radical cation. B3LYP/6-31G(d): -2986.24626 a.u. $<S^2> = 0.75802$ B3LYP/6-311+G(d,p): -2986.61007 a.u. $<S^2> = 0.75003$ Point group: *C*₁ C -8.530716 -0.115563 0.421889 H -9.367103 0.571696 0.471484 C -8.653757 -1.473682 0.636855 H -9.552187 -2.028431 0.874568 C -7.208117 0.269510 0.133637 H -6.908698 1.292709 -0.065514 C -6.307664 -0.797374 0.125902 S -7.149678 -2.303033 0.488145

С

С	-4.903475 -0.774125 -0.125615
С	-4.003046 -1.843115 -0.140717
Η	-4.301477 -2.868561 0.050062
С	-2.686998 -1.454523 -0.434861
Η	-1.863772 -2.158651 -0.493086
С	-2.519755 -0.088030 -0.658317
\mathbf{S}	-4.053613 0.720826 -0.493517
Si	-0.908111 $0.851345 - 1.033752$
С	-1.325576 2.228981 -2.252977
Η	-1.760706 1.817759 -3.170868
Η	-0.431597 2.795036 -2.536617
Η	-2.045439 2.943327 -1.835733
С	0.297479 - 0.393628 - 1.777203
Η	-0.123060 - 0.864211 - 2.672860
Η	0.564703 - 1.187634 - 1.070476
Η	$1.229382 0.101786 \ -2.073235$
С	-0.301479 1.542764 0.624540
Η	-0.333740 0.728231 1.362230
Η	-1.044315 2.278564 0.969277
Si	1.398538 2.384265 0.797129
С	1.794690 $3.559985 - 0.623276$
Η	1.872681 $3.049674 - 1.590085$
Η	2.741115 4.083930 -0.446470
Η	1.014387 4.324333 -0.717576
С	1.445590 3.297253 2.450109
Η	2.423110 3.762358 2.618444
Η	1.242167 2.628038 3.293802
Η	0.689488 4.091523 2.468519
С	2.736396 1.038838 0.858118
С	2.904886 0.048663 1.824334
Η	2.240080 - 0.056306 2.675920
С	4.008496 -0.794139 1.613949
Η	4.280608 -1.609152 2.276290
С	4.734810 -0.473842 0.465716
\mathbf{S}	3.996393 0.906251 - 0.335714
С	5.910532 - 1.101446 - 0.049142

- 6.642108 0.776733 1.191298Η 6.372230 0.042245 - 1.849159С 7.757955 -1.611008 -1.398751 Η 8.444538 -1.511680 -2.231286
- С $7.888403 \cdot 2.576338 \cdot 0.421904$
- Η 8.651553 - 3.339417 - 0.340624
- S 6.645368 -2.477818 0.769823

Neutral $2T_2Si_2C$ (*cis*) calculated at the energy minimum of the radical cation geometry.

B3LYP/6-311+G(d,p): -2986.85046 a.u.

$2T_2Si_2C$ (*trans*)

B3LYP/6-31G(d): -2986.481328 a.u. B3LYP/6-311+G(d,p): -2986.85348 a.u. Point group: C_1 Si 0.872314 $-1.409380\ 2.275251$ Si -0.872314 1.409380 2.275251C -1.254979 2.782846 1.041339 C -2.486369 3.252623 0.634838 S 0.000000 3.674936 0.204487 C -2.436761 4.292120 -0.333238 H -3.420041 2.852393 1.017533 C -1.153242 4.645498 -0.690542 Н -3.317976 4.752178 -0.768685 C -0.710994 5.650915 -1.637542 C 0.511239 5.777733 -2.261820 S -1.782208 6.949705 -2.139708 C 0.589727 6.895722 -3.140074 H 1.323219 5.074818 -2.108521 C -0.570431 7.618519 -3.186073 H 1.472187 7.144752 -3.719469 Н -0.789263 8.503053 -3.768947 C 1.254979 -2.782846 1.041339C 2.486369 $-3.252623\ 0.634838$

Η	-3.178962 (0.412281	2.212316
Η	-2.373276 (0.045607	3.741803
Н	-3.060848	1.651909	3.472864
С	0.207459	2.121741	3.657704
Η	1.177640	2.466980	3.281280
Η	-0.286885	2.979532	4.128086
Η	0.399718	1.377458	4.440126
С	2.525378	-0.827001	2.988622
Η	3.178962	-0.412281	2.212316
Η	2.373276	-0.045607	3.741803
Η	3.060848	-1.651909	3.472864
С	-0.207459 -	2.121741	3.657704
Η	-0.399718 -	-1.377458	4.440126
Н	-1.177640 -	-2.466980	3.281280
Η	0.286885	-2.979532	4.128086

S_{0}	0.000000	-3.674936	0.204487
С	2.436761	-4.292120	0 -0.333238
Η	3.420041	-2.85239	$3\ 1.017533$
\mathbf{C}	1.153242	-4.645498	8 -0.690542
Η	3.317976	-4.75217	8 -0.768685
\mathbf{C}	0.710994	-5.65091	5 -1.637542
\mathbf{C}	-0.511239	-5.777733	-2.261820
\mathbf{S}	1.782208	-6.94970	5 -2.139708
С	-0.589727	-6.895722	2-3.140074
Η	-1.323219	-5.074818	8 -2.108521
\mathbf{C}	0.570431	-7.618519	9 -3.186073
Η	-1.472187	-7.144752 ·	-3.719469
Η	0.789263	-8.503053	-3.768947
\mathbf{C}	0.000000	0.000000	1.353157
Η	0.749775	0.446270	0.682890
Η	-0.749775	-0.446270	0.682890
С	-2.525378	0.827001	2.988622