Supporting information

Addition of (η⁵-C₅Me₅)IrH₄ to a Zwitterionic Silylene: Stepwise Formation of Iridium(V)-Silyl and Iridium(III)-Silylene Complexes

Ann-Katrin Jungton,^{*a*} Antje Meltzer,^{*b*} Carsten Präsang,^{*b*} Thomas Braun,^{*,*a*} Matthias Driess^{*,*b*} and Anna Penner^{*a*}

^a Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin.
 Fax: 030-20936966; Tel: 030-20933913; E-mail: thomas.braun@chemie.hu-berlin.de
 ^b Technische Universität Berlin, Institut für Chemie, Straße des 17. Juni 115, 10623 Berlin.
 Fax: 030-31429732; Tel: 030-31429731; E-mail: matthias.driess@tu-berlin.de

Experimental Details

The synthetic work was carried out on Schlenk line or an argon-filled glove box with oxygen levels below 10 ppm. All solvents were purified and dried by conventional methods and destilled under argon before use. The Silyene 1^1 and Cp*IrH₄² 2 were prepared according to the literature.

The NMR spectra were recorded at 298 K on a Bruker DPX 300 or Bruker AV 400 spectrometer. The ¹H-NMR chemical shifts were referenced to residual C₆D₅H at δ 7.15 or [D₇]Toluene at δ 2.15. The ¹⁹F-NMR spectra were referenced externally to C₆F₆ at δ –162.9. The ¹¹B-NMR spectrum was referenced to BF₃ OEt₂ at δ 0.0. The ¹³C{¹H}-NMR spectra were referenced to Si(Me₃)₄ at δ 0.0. Infrared spectra were recorded on a Bruker Vector 22 spectrometer which was equipped with an ATR unit (ZnSe or diamond).

Synthesis of 3: The Silylene 1 (34 mg, 0.077 mmol) was added to a solution of Cp*IrH₄ 2 (25 mg, 0.077 mmol) in 0.5 ml toluene. The yellow reaction mixture was then stored at -30 °C to obtain 3 as yellow crystals. Yield 55 mg (93%).

Analytical data for **3**: ¹H NMR (400 MHz, [D₈]toluene): δ 7.20-6.97 (m, 7 H, 2,6-*i*Pr₂C₆H₃ and SiH), 5.37 (s, 1 H, ring-CH), 3.84 (s, 1 H, NCCH₂), 3.58 (sept, $J_{HH} = 6.8$ Hz, 1 H, $CH(CH_3)_2$), 3.44 (sept, $J_{HH} = 6.8$ Hz, 1 H, $CH(CH_3)_2$), 3.22 (s, 1 H, NCCH₂), 1.99 (s, 15 H, C₅(CH₃)₅), 1.34 (s, 3 H, NCCH₃), 1.31 (d, $J_{HH} = 7.3$ Hz, 6 H, $CH(CH_3)_2$), 1.30 (d, $J_{HH} = 7.0$ Hz, 6 H, $CH(CH_3)_2$), 1.26 (d, $J_{HH} = 7.0$ Hz, 6 H $CH(CH_3)_2$), 1.16 (d, $J_{HH} = 6.9$ Hz, 6 H, $CH(CH_3)_2$), -15.58 (s, 3 H, IrH; at 198 K: δ -15.11 (s, br), -15.96 (s, br), -17.40 (s, br); ¹H, ²⁹Si HMBC NMR (400/79.49 MHz, [D₈]toluene): δ (²⁹Si) -7.7 ($J_{HSi} = 215$ Hz); ¹³C NMR (75.47 MHz, C₆D₆): δ 150.87, 150.44 (NC), 149.73, 149.41, 149.16, 143.78, 143.28, 142.60 (aromatic C), 127.76, 127.49, 125.90, 124.82, 124.57, 124.18 (aromatic CH), 104.44 (ring-CH), 98.30 ($C_5(CH_3)_5$), 85.26 (NCCH₂), 30.15, 29.85, 29.14, 28.97 ($CH(CH_3)_2$), 27.74, 26.68, 27.17, 26.30, 25.77, 24.93, 24.54, 24.51, 24.08 ($CH(CH_3)_2$ and NCCH₃), 10.45 ($C_5(CH_3)_5$). IR(ATR, cm⁻¹): 2173, 2016 (IrH, SiH). Elemental analysis (%) cald for C₃₉H₅₉N₂IrSi: C 60.35; H 7.66; N 3.61, found: C 60.21, H 7.41; N 3.26.

Synthesis of 4: $B(C_6F_5)_3$ (25 mg, 0.049 mmol) was added to a yellow solution of **3** (38 mg, 0.049 mmol). The mixture was stirred at room temperature and turned orange within 2 h. After 4 h the volatiles were removed to give an orange oil. Yield: 72 % (45 mg). Analytical data for **4**:

¹H NMR (400 MHz, [D₈]toluene): δ 7.23-6.94 (m, 6 H, 2,6-*i*Pr₂C₆*H*₃), 6.53 and 6.52 (both s, 2 H, SiH, ring-CH), 3.26 (sept, $J_{HH} = 6.8$ Hz, 1 H, $CH(CH_3)_2$), 3.12 (d, br, $J_{HH} = 20$ Hz, 1 H, CH₂), 2.98 (sept, $J_{HH} = 6.8$ Hz, 1 H, $CH(CH_3)_2$), 2.84 (sept, $J_{HH} = 6.8$ Hz, 1 H, $CH(CH_3)_2$), 2.57 (sept, $J_{HH} = 6.7$ Hz, 1 H, $CH(CH_3)_2$), 2.41 (d, br, $J_{HH} = 20$ Hz, 1 H, $CH(CH_3)_2$), 1.72 (d, $J_{HH} = 6.7$ Hz, 3 H, $CH(CH_3)_2$), 1.62 (s, 6 H, NCCH₃), 1.45 (s, 15 H, C₅(CH₃)₅), 1.42 (d, $J_{HH} = 6.8$ Hz, 3 H, $CH(CH_3)_2$), 1.38 (d, $J_{HH} = 6.9$ Hz, 3 H, $CH(CH_3)_2$), 1.25 (d, $J_{HH} = 6.8$ Hz, 3 H, $CH(CH_3)_2$), 1.22 (d, $J_{HH} = 6.9$ Hz, 3 H, $CH(CH_3)_2$), 1.04 (d, $J_{HH} = 6.6$ Hz, 3 H, $CH(CH_3)_2$), 0.96 (d, $J_{HH} = 6.9$ Hz, 3 H, $CH(CH_3)_2$), 0.92 (d, $J_{HH} = 6.8$ Hz, 3 H, $CH(CH_3)_2$), -15.65 (s, 3 H, IrH); ¹¹B NMR (128.37 MHz, [D₈]toluene): δ –15.5; ¹¹H, ²⁹Si-NMR (400/79.49 MHz, [D₈]toluene): δ(²⁹Si) 12.7 ($J_{HSi} = 224$ Hz); ¹³C-NMR (75.47 MHz, C₆D₆): δ 171.39, 186.73(NC), 147.53, 147.06, 144.70, 144.58, 139.93, 138.97 (aromatic C), 129.76, 129.68, 126.56, 126.01, 125.64, 125.44, (aromatic CH), 105.08 (ring-CH), 101.18 (CH₂B), 100.62(C₅(CH₃)₅), 30.56, 30.48, 29.29, 29.19, (CH(CH₃)₂), 27.82, 25.92, 25.62, 24.78, 24.72, 120.41 + 100.41 + 100.41 + 100.41 + 100.41 + 100.41 + 100.41 + 100.41 + 100.41 + 100.42 + 100.41 + 100.4

24.57, 24.25, 24.20, 23.37, $(CH(CH_3)_2)$ und NCCH₃), 10.24 $(C_5(CH_3)_5)$; IR(ATR, cm⁻¹): 2187, 2071 (IrH, SiH). Elemental analysis (%) cald for $C_{57}H_{59}BF_{15}N_2IrSi$: C 53.15; H 4.62; N 2.17, found: C 52.80, H 4.38; N 1.83.

Synthesis of 5: A solution of **3** (53 mg, 0.068 mmol) in 0.5 ml toluene was stirred at room temperature for 24 h. At 243 K orange crystals formed which consisted of **5**. Yield: 95 % (50 mg).

Analytical data for **5**: ¹H NMR (400 MHz, C₆D₆): δ 7.22-7.10 (m, 6 H, 2,6-*i*Pr₂C₆H₃), 6.45 (s, 1 H, SiH), 4.95 (s, 1 H, ring-CH), 3.57 (sept, *J*_{HH} = 6.9 Hz, 2 H, *CH*(CH₃)₂), 3.01 (sept, *J*_{HH} = 6.9 Hz, 2 H, *CH*(CH₃)₂), 1.93 (s, 15 H, C₅(CH₃)₅), 1.62 (d, *J*_{HH} = 6.9 Hz, 6 H, CH(*CH*₃)₂), 1.49 (d, *J*_{HH} = 6.8 Hz, 6 H, CH(*CH*₃)₂), 1.48 (s, 6 H, NCCH₃), 1.17 (d, *J*_{HH} = 6.9 Hz, 6 H, CH(*CH*₃)₂), 1.07 (d, *J*_{HH} = 7.2 Hz, 6 H, CH(*CH*₃)₂), -19.24 (s, 2 H, IrH); ¹H,²⁹Si HMBC NMR (400/79.49 MHz, [D₈]toluene): δ (²⁹Si) 13.6 (*J*_{HSi} = 170 Hz); ¹³C-NMR (75.47 MHz, C₆D₆): δ 170.41(NC), 145.96, 144.69, 142.75 (aromatic C), 128.25, 124.80, 124.75 (aromatic CH), 100.8 (ring-CH), 91.67 (*C*₅(CH₃)₅), 29.41, 30.61 (*C*H(CH₃)₂), 25.31, 26.26, 25.13, 24.64, 24.34 (CH(*C*H₃)₂) and NCCH₃), 12.35 (C₅(*C*H₃)₅); IR(ATR, cm⁻¹): 2164, 1968 (SiH, IrH); Elemental analysis (%) cald for C₃₉H₅₉N₂IrSi: C 60.35; H 7.66; N 3.61 found: C 60.33, H 7.60; N 3.30.

Crystal Structure Determination of Complexes 3 and 5

Colourless crystals of **3** and red crystals of **5** were obtained from a solution in toluene at 243 K. The diffraction data for **3** and **5** were collected on a STOE IPDS 2T diffractometer at 100 K. Crystallographic data and some experimental details are summarized in Tables 1 to 4. The structures were solved by direct methods and refined with the full matrix least square methods on F^2 (SHELXL97).³ The disordered CH₃ group (C14) in **5** was refined on two positions (57:43), the corresponding methyl groups were restrained with "sadi" instructions and were refined anisotropically. The hydrogen atoms coordinated at the Si and Ir centres in **3** could not be localized in the difference Fourier map. The Ir bound hydrogen atoms in **5** could not be localised in the difference Fourier map; the position of H(1) at Si could be refined. All other hydrogens atoms were placed at calculated positions and refined using a riding model.

Table 1. Crystal data and structure refinement for 3

Identification code	complex 3
Empirical formula	C39 H59 Ir N2 Si
Formula weight	776.17
Temperature	100(2) K
Wavelenght	0.71073 Å
Crystal system	orthorhombic
Space group	$P na2_1$
Unit cell dimensions	a = 18.1058(4)Å
	b = 11.9735(3) Å
	c = 11.9735(3) Å
Volume	3636.87(16)A ³
Ζ	4
Density (calculated)	1.418 Mg/m ³
Absorption coefficient	3.732 mm ⁻¹
F(000)	1592
Crystal size	0.20 x 0.08 x 0.08 mm
Theta range for data collection	2.37 to 30.55°
R(int)	0.0583
Reflections collected	42435
Reflections unique	11005
Completeness to theta $= 30.55$	98.9 %
Absorption correction	Numerical
Max. and min. transmission	0.7545 and 0.5223
Refinement method	Full-matrix least-squares on F^2
Data/ restraints / parameters	11005 / 37 / 402
Goodness-of-fit on F^2	1.076
Final R indices [I>2sigma(I)]	R1 = 0.0376, wR2 = 0.0586
R indices (all data)	R1 = 0.0508, wR2 = 0.0609
Largest diff. peak and hole	2.150 and -2.310 e.A ⁻³

Table 2: S	elected b	bond le	ngths (Å	() and	angles	(°) in 3	8 with	estimated	d standard	deviati	ons in
parentheses	s.										

Ir(1)-Si(1)	2.3293(11)	C(32)-Ir(1)	2.238(4)	
N(1)-Si(1)	1.785(4)	C(33)-Ir(1)	2.276(5)	
N(2)-Si(1)	1.771(4)	C(34)-Ir(1)	2.282(4)	
C(1)-N(1)	1.406(5)	C(30)-C(31)	1.429(6)	
C(6)-N(1)	1.444(5)	C(31)-C(32)	1.430(7)	
C(3)-N(2)	1.399(6)	C(32)-C(33)	1.426(7)	
C(18)-N(2)	1.427(5)	C(33)-C(34)	1.441(8)	
C(1)-C(2)	1.436(6)	C(30)-C(34)	1.422(7)	
C(1)-C(4)	1.373(6)	C(30)-C(35)	1.509(6)	
C(2)-C(3)	1.364(7)	C(31)-C(36)	1.505(6)	
C(3)-C(5)	1.486(7)	C(32)-C(37)	1.507(6)	
C(30)-Ir(1)	2.256(4)	C(33)-C(38)	1.507(7)	
C(31)-Ir(1)	2.243(4)	C(34)-C(39)	1.497(6)	
N(1)-Si(1)-Ir(1)	119.75(13)	C(33)-Ir(1)-Si(1)	165.97(14)	
N(2)-Si(1)-Ir(1)	115.27(12)	C(34)-Ir(1)-Si(1)	129.65(15)	
N(2)-Si(1)-N(1)	100.27(18)	C(30)-C(31)-C(32)	107.4(4)	
C(1)-N(1)-Si(1)	120.4(3)	C(33)-C(32)-C(31)	108.6(4)	
C(3)-N(2)-Si(1)	118.3(3)	C(32)-C(33)-C(34)	107.5(4)	
N(1)-C(1)-C(2)	118.6(4)	C(30)-C(34)-C(33)	107.8(4)	
C(4)-C(1)-N(1)	122.4(4)	C(34)-C(30)-C(31)	108.7(4)	
C(3)-C(2)-C(1)	127.9(4)	C(30)-C(31)-Ir(1)	72.0(2)	
C(2)-C(3)-N(2)	121.6(4)	C(31)-C(32)-Ir(1)	71.6(3)	
N(2)-C(3)-C(5)	118.7(4)	C(32)-C(33)-Ir(1)	70.1(3)	
C(30)-Ir(1)-Si(1)	105.24(11)	C(33)-C(34)-Ir(1)	71.3(3)	
C(31)-Ir(1)-Si(1)	110.81(11)	C(34)-C(30)-Ir(1)	72.7(3)	
C(32)-Ir(1)-Si(1)	143.00(14)			

Table 3. Crystal data and structure refinement for 5

Identification code	complex 5			
Empirical formula	C39 H59 Ir N2 Si			
Formula weight	776.17			
Temperature	100(2) K			
Wavelenght	0.71073 Å			
Crystal system	monoclinic			
Space group	<i>C</i> 2/ <i>c</i>			
Unit cell dimensions	a = 30.6330(10) Å			
	b = 16.3992(4) Å	$\beta = 118.185(3)^{\circ}$		
	c = 16.7702(6) Å			
Volume	7425.7(4) A ³			
Ζ	8			
Density (calculated)	1.389 Mg/m ³			
Absorption coefficient	3.656 mm ⁻¹			
F(000)	3184			
Crystal size	0.30 x 0.20 x 0.20 mm			
Theta range for data collection	2.37 to 29.20 °			
R(int)	0.0509			
Reflections collected	34592			
Reflections unique	10001			
Completeness to theta $= 29.20$	99.3 %			
Absorption correction	Numerical			
Max. and min. transmission	0.5284 and 0.4068			
Refinement method	Full-matrix least-squares on F^2			
Data/ restraints / parameters	10001 / 7 / 417			
Goodness-of-fit on F^2	1.070			
Final R indices [I>2sigma(I)]	R1 = 0.0382, wR2 = 0.0795			
R indices (all data)	R1 = 0.0470, wR2 = 0.0825			
Largest diff. peak and hole	5.648 and -4.648 e.A ⁻³			

Ir(1)-Si(1)	2,2328(9)	C(32)-Ir(1)	2267(4)
n(1) $n(1)$	1.45(5)	C(32) II(1)	2.207(1)
$S_{1}(1)-H(1)$	1.45(5)	C(33)-Ir(1)	2.249(4)
N(1)-Si(1)	1.850(3)	C(34)-Ir(1)	2.233(4)
N(2)-Si(1)	1.855(3)	C(30)-C(31)	1.411(6)
C(1)-N(1)	1.336(4)	C(31)-C(32)	1.428(6)
C(6)-N(1)	1.450(4)	C(32)-C(33)	1.440(6)
C(3)-N(2)	1.337(5)	C(33)-C(34)	1.404(6)
C(18)-N(2)	1.451(5)	C(30)-C(34)	1.444(6)
C(1)-C(2)	1.403(5)	C(30)-C(35)	1.497(6)
C(1)-C(4)	1.495(5)	C(31)-C(36)	1.516(6)
C(2)-C(3)	1.393(5)	C(32)-C(37)	1.521(7)
C(3)-C(5)	1.504(5)	C(33)-C(38)	1.505(6)
C(30)-Ir(1)	2.235(4)	C(34)-C(39)	1.499(6)
C(31)-Ir(1)	2.245(4)		
Ir(1)-Si(1)-H(1)	123.7(19)	Si(1)-Ir(1)-C(31)	151.45(12)
N(1)-Si(1)-Ir(1)	116.93(10)	Si(1)-Ir(1)-C(32)	121.04(12)
N(2)-Si(1)-Ir(1)	120.01(10)	Si(1)-Ir(1)-C(33)	112.95(10)
N(1)-Si(1)-N(2)	94.46(13)	Si(1)-Ir(1)-C(34)	132.64(11)
N(1)-Si(1)-H(1)	101(2)	C(30)-C(31)-C(32)	108.7(4)
N(2)-Si(1)-H(1)	95.0(19)	C(31)-C(32)-C(33)	107.5(4)
C(1)-N(1)-Si(1)	121.3(2)	C(34)-C(33)-C(32)	107.8(4)
C(3)-N(2)-Si(1)	121.6(2)	C(33)-C(34)-C(30)	108.7(4)
N(1)-C(1)-C(2)	122.1(3)	C(31)-C(30)-C(34)	107.3(4)
N(1)-C(1)-C(4)	119.9(3)	C(30)-C(31)-Ir(1)	71.3(2)
C(3)-C(2)-C(1)	124.9(3)	C(31)-C(32)-Ir(1)	70.7(2)
N(2)-C(3)-C(2)	122.1(3)	C(32)-C(33)-Ir(1)	72.1(2)
N(2)-C(3)-C(5)	119.6(3)	C(33)-C(34)-Ir(1)	72.4(2)
Si(1)-Ir(1)-C(30)	169.27(12)	C(34)-C(30)-Ir(1)	71.1(2)

Table 4: Selected bond lengths (Å) and angles (°) in **5** with estimated standard deviations in parentheses.

1 M. Driess, S. Yao, M. Brym, C. van Wüllen and D. Lentz, J. Am. Soc. Chem., 2006, 128, 9628.

2 T. M. Gilbert and R. G. Bergman, Organometallics, 1983, 2, 1458.

3 G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution; SHELX-97, Program for Crystal Structure Refinement, University of Göttingen **1997**.