DNA Cleavage by the Cu(II) Complex of the DNA-intercalating 9-Bis(pyridin-2-ylmethyl)aminobenzo[b]quinolizinium

Maoqun Tian, Heiko Ihmels* and Elke Brötz

University of Siegen, Organic Chemistry II, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany. E-mail: ihmels@chemie.uni-siegen.de; Tel: +49 (0) 271 740 3440

Supporting Information

1 H-, 13 C-, and 2D-NMR spectra of 1a	S2-S4
Job's plot of 1a with Cu ²⁺	S4
DNA cleavage experiments	S5
Photometric and fluorimetric pH titrations of 1a	S6
Photometric titrations of 1a with polynucleotides	S7
Viscometric titrations of ct DNA with 1a	S 8

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Figure S1. ¹H-NMR spectrum of 1a in CD₃CN.

Figure S2. ¹³C-NMR spectrum of 1a in CD₃CN.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Figure S3. {1H, 1H}-COSY spectrum of 1a in CD₃CN.

Figure S4. HSQC spectrum of 1a in CD₃CN

Figure S5. HMBC spectrum of 1a in CD₃CN.

Figure S6. Job' plot of **1a** with Cu²⁺ in water (HEPES, 50 mM, pH 7.30). The total concentration of **1a** and Cu²⁺ is 50 μ M. The absorption was measured at $\lambda = 440$ nm.

Figure S7. Formation of single-strand breaks in plasmid pBR322 (0.03 mM in bp) in the absence of **1a**-Cu(II) complex under aerobic (a) and anaerobic (b) conditions, and in the presence of **1a**-Cu²⁺ complex (0.04 mM) under aerobic (c) and anaerobic (d) conditions. T = 37 °C, t = 2 h, pH = 7.3 buffer (50 mM Tris-HCl/10 mM NaCl).

Figure S8. T4 ligase enzymatic assay: a: Religated Lambda DNA/HindIII after incubation with T4 ligase; b: Lambda DNA/HindIII after incubation without T4 ligase; c: relaxed plasmid pBR322 after treatment with the **1a**-Cu(II) complex; d: plasmid pBR322 after treatment with the **1a**-Cu(II) complex; d: plasmid pBR322 after treatment with the **1a**-Cu(II) complex and subsequent incubation with T4 ligase.

Figure S9. Spectrophotometric (A) and spetrofluorimetric titration (B) of aq. HCl (2 M) to **1a** (A: $c = 50 \ \mu$ M; B: $c = 10 \ \mu$ M) in Britton-Robinson buffer (pH = 0.9–7.1). The arrows indicate the changes of the bands upon acidification. Insets: Plot of the absorption at 454 nm (A) and emission intensity at 512 nm (B) versus pH of the solution, numerical fits calculated for p $K_a = 2.5 \pm 0.1$ and 4.7 ± 0.2 from photometric titration.

Figure S10. Spectrophotometric titration of poly(dAdT)₂ (A) and poly(dCdG)₂ (B) to **1a** (c = 50 μ M) in BPE buffer; pH = 7.0. The arrows indicate the changes of the bands upon addition of polynucleotides DNA. Insets: the Scatchard plot (r/c vs c; r = ligand-to-DNA ratio r) fitted to the neighbor-exclusion model of McGhee and von Hippel to give the binding constants $K_b = (1.5 \pm 0.1) \times 10^4$ M⁻¹ (A) and $K_b = 3.1 \pm 0.1 \times 10^4$ M⁻¹ (B), binding site sizes $n = 2.0 \pm 0.1$ (A) and $n = 2.3 \pm 0.1$ (B).

Figure S11. The relative specific viscosity of ct DNA solutions in the presence of ethidium bromide (\blacksquare) and **1a** (\blacktriangle) versus ligand-to-DNA ratio *r*.