Electronic Supporting Information

Syntheses and structural characterization of the cobalt complexes

[Co(bztpen)Cl]BF₄ (3)

42.4 mg (0.1 mmol) bztpen and 23.8 mg (0.1 mmol) $CoCl_2 \times 6 H_2O$ were dissolved in 1 ml methanol. This solution was layered with a solution of 11.0 mg (0.1 mmol) $NaBF_4$ dissolved in 0.5 ml of methanol. Overnight purple block shaped crystals, suitable for X-ray analysis were formed. Calc. for $C_{27}H_{29}BCIF_4CoN_5$: C, 53.62; H, 4.83; N, 11.58%. Found: C, 52.54; H, 4.83; N, 11.32% ESIMS (CH₃CN), *m/z* (%, assignment): 241.61 (55, $[Co(bztpen)]^{2+}$), 256.61 (40, $[Co(bztpen)Cl]^{2+}$), 518.17 (100, $[Co(bztpen)Cl]^{+}$).

[Co(metpen)Cl]SbF₆ (4)

104.2 mg (0.3 mmol) metpen and 66.6 mg (0.28 mmol) $CoCl_2 \times 6 H_2O$ were dissolved in 1 ml methanol and the resulting brown to violet solution was stirred for 15 min. 37.0 mg (0.14 mmol) NaSbF₆ dissolved in 1.5 ml MeOH were added. A purple powder was precipitated by adding the complex solution to diethyl ether. The solution was decanted and the precipitate was dried in air. Redissolving in acetone and diffusion of diethyl ether into this solution at room temperature yielded after 12 h purple single crystals, suitable for x-ray analysis. Calc. for C₂₁H₂₅ClF₆CoN₅Sb: C, 37.22; H, 3.72; N, 10.34%. Found: C, 37.13; H, 3.63; N, 10.57% ESIMS (CH₃CN), *m/z* (%, assignment): 203.08 (55, [Co(metpen)]²⁺), 220.58 (40, [Co(metpen)Cl]²⁺), 441.07 (100, [Co(metpen)Cl]⁺).

[Co(bztpen)(OAc)]BPh₄ (5)

20.0 mg (0.05 mmol) bztpen and 11.2 mg (0.045 mmol) $Co(OAc)_2 \times 4 H_2O$ were dissolved in 1 ml methanol. A solution of 15.1 mg (0.044 mol) NaBPh₄ in 0.5 ml methanol was added. A precipitate was formed immediately, which was redissolved by adding 1.5 ml of dichloromethane. Salmon colored block shaped single crystals were obtained by diffusion of diethyl ether at room temperature after 12 h. $C_{53}H_{52}BCoN_5O_2$: C, 73.95; H, 6.09; N, 8.14%. Found: C, 73.18; H, 6.02; N, 7.78% ESIMS (CH₃CN), *m/z* (%, assignment): 241.61 (85, [Co(bztpen)]²⁺), 527.12 (100, [Co(bztpen)(HCO₂)]⁺), 517.16 (60, [Co(bztpen)Cl]⁺).

Table S1 crystal and structure refinement data

-	3	4	5
Empirical formula	C27 H28 B Cl Co F4	C21 H25 Cl Co F6 N5	C ₅₃ H ₅₂ B Co N ₅ O ₂
-	N ₅	Sb	
Formula weight	603.73	677.59	860.74
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	Pbca	Pca2(1)	P-1
a/Å	16.309(3)	18.260(4)	13.234(3)
b/Å	17.791(4)	9.1630(18)	13.491(3)
c/Å	18.066(4)	15.057(3)	13.920(3)
α/°	90	90	96.33(3)
β/°	90	90	114.02(3)
γ/°	90	90	101.27(3)
V/ Å ³	5241.9(18)	2519.3(9)	2175.8(8)
Z	8	4	2
$D_{calc}/g \ cm^3$	1.530	1.787	1.314
T/K	193(2)	193(2)	193(2)
μ (MoK _{α})mm ⁻¹	0.813	1.901	0.443
Crystal size/mm	0.36 x 0.36 x 0.48	0.53 x 0.38 x 0.04	0.38 x 0.30 x 0.50
F(000)	2480	1340	906
θ range/°	2.55 - 28.09	4.24 - 28.05	2.64 - 28.17
Index ranges	$-21 \le h \le 20$	$-22 \le h \le 24$	$-17 \le h \le 17$
	$-22 \le k \le 23$	$-10 \le k \le 12$	$-17 \le k \le 17$
	$-23 \le l \le 23$	$-19 \le l \le 19$	$-18 \le l \le 17$
Reflections collected	44894	20623	19812
Unique reflections	6334	6001	9719
R _{int}	0.0684	0.0573	0.0515
Refinement method	Full-matrix	Full-matrix	Full-matrix
	least-squares on F ²	least-squares on F ²	least-squares on F ²
Data/constraints/ parameters	6334 / 0 / 492	6001 / 1 / 330	9719 / 0 / 756
Goodness-of-fit on R ²	0.973	1.041	0.946
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0457$	$R_1 = 0.0357$	$R_1 = 0.0528$
	$wR_2 = 0.1314$	$wR_2 = 0.0940$	$wR_2 = 0.1371$
R indices (all data)	$R_1 = 0.0622$	$R_1 = 0.0397$	$R_1 = 0.0856$
	$wR_2 = 0.1449$	$wR_2 = 0.0971$	$wR_2 = 0.1560$
Largest diff. peak/hole [e ⁻ Å ⁻³]	0.903 and -1.193	0.552 and -0.481	0.694 and -1.228

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

atoms	3	atoms	4	atoms	5
Co(1)-Cl(1)	2.3408(8)	Co(1)-Cl(1)	2.3271(10)	Co(1)-O(1)	2.041(3)
Co(1)-N(1)	2.189(2)	Co(1)-N(1)	2.203(3)	Co(1)-O(2)	2.783
Co(1)-N(2)	2.142(2)	Co(1)-N(2)	2.106(3)	Co(1)-N(1)	2.228(2)
Co(1)-N(3)	2.260(2)	Co(1)-N(3)	2.134(3)	Co(1)-N(2)	2.175(2)
Co(1)-N(4)	2.110(2)	Co(1)-N(4)	2.165(3)	Co(1)-N(3)	2.143(2)
Co(1)-N(5)	2.2093(19)	Co(1)-N(5)	2.267(3)	Co(1)-N(4)	2.243(2)
				Co(1)-N(5)	2.211(3)
				C(28)-O(1)	1.244(4)
				C(28)-O(2)	1.179(4)
Cal(1)-Co(1)- N(1)	171.41(6)	Cal(1)-Co(1)- N(1)	169.20(10)	O(1)-Co(1)- N(1)	152.82(10)
Cal(1)-Co(1)- N(2)	94.14(6)	Cal(1)-Co(1)- N(2)	103.34(9)	O(1)-Co(1)- N(2)	84.67(10)
Cl(1)-Co(1)- N(3)	88.77(6)	Cl(1)-Co(1)-	93.32(10)	O(1)-Co(1)- N(3)	92.90(10)
Cal(1)-Co(1)-	103.78(7)	Cal(1)- $Co(1)$ - $N(4)$	104.58(10)	O(1)-Co(1)-	127.38(11)
N(4)	102 72(6)	N(4)	80.02(0)	N(4)	00.16(11)
N(5)	102.75(0)	N(5)	89.03(9)	N(5)	90.10(11)
N(1)-Co(1)- N(2)	77.58(8)	N(1)-Co(1)- N(2)	75.31(14)	N(1)-Co(1)- N(2)	73.48(9)
N(1)-Co(1)-	99.76(8)	N(1)-Co(1)-	76.82(15)	N(1)-Co(1)-	76.52(9)
N(3)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N(3)	,()	N(3)	
N(1)-Co(1)-	76.24(8)	N(1)-Co(1)-	81.13(13)	N(1)-Co(1)-	79.27(9)
N(4)		N(4)	()	N(4)	()
N(1)-Co(1)-	80.68(7)	N(1)-Co(1)-	101.36(14)	N(1)-Co(1)-	103.66(10)
N(5)		N(5)	× /	N(5)	
N(2)-Co(1)-	170.70(8)	N(2)-Co(1)-	104.22(13)	N(2)-Co(1)-	102.11(9)
N(3)		N(3)		N(3)	
N(2)-Co(1)-	102.99(8)	N(2)-Co(1)-	144.33(13)	N(2)-Co(1)-	141.57(9)
N(4)		N(4)		N(4)	
N(2)-Co(1)-	96.08(8)	N(2)-Co(1)-	83.02(12)	N(2)-Co(1)-	85.30(10)
N(5)		N(5)	~ /	N(5)	
N(3)-Co(1)-	84.84(7)	N(3)-Co(1)-	95.89(12)	N(3)-Co(1)-	97.21(8)
N(4)		N(4)	~ /	N(4)	
N(3)-Co(1)-	74.64(7)	N(3)-Co(1)-	171.62(13)	N(3)-Co(1)-	172.21(9)
N(5)		N(5)		N(5)	
N(4)-Co(1)-	145.89(8)	N(4)-Co(1)-	75.74(13)	N(4)-Co(1)-	75.28(9)
N(5)		N(5)		N(5)	

Table S2 Bond lengths [Å] and angles [°]

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Fig. S1 Ortep plot of the complex cations (a) $[Co(bztpen)Cl]^+$ (**3**) (b) $[Co(metpen)Cl]^+$ (**4**) and (c) $[Co(bztpen)OAc]^+$ (**5**). The thermal ellipsoids are shown at 30% probability. Hydrogen atoms are omitted for clarity.

Kinetic analysis:

Oxidation of [Fe(bztpen)Cl]ClO₄

Table S3: Observed rate constants, k_{obs} (s⁻¹), for the oxidation reaction of [Fe(bztpen)Cl]ClO₄ with H₂O₂ in methanol calculated from absorbance vs. time traces at 393 nm. Each rate constant is the average of at least three kinetic runs.

[H ₂ O ₂] [M]	-40°C	-35°C	-30°C	-25°C
0.01	0.19 ± 0.02	0.46 ± 0.04	0.8 ± 0.2	0.1 ± 0.1
0.05	0.63 ± 0.02	0.95 ± 0.03	1.47 ± 0.09	2.3 ± 0.1
0.10	1.05 ± 0.02	1.70 ± 0.05	2.43 ± 0.08	4.3 ± 0.1
0.16	1.59 ± 0.04	2.3 ± 0.1	3.4 ± 0.1	5.6 ± 0.2
0.25	1.59 ± 0.06	2.5 ± 0.1		
0.375	1.9 ± 0.2	2.8 ± 0.2		
0.50	2.0 ± 0.4	3.5 ± 0.4	5.4 ± 0.1	10.3 ± 0.3
0.75	2.5 ± 0.5	4.6 ± 0.4	6.2 ± 0.1	15.1 ± 0.5
1.00	3.1 ± 0.5	5.8 ± 0.5	8.2 ± 0.2	16.3 ± 0.5
1.50	3.6 ± 0.3			

Figure S2: k_{obs} versus [H₂O₂] for the oxidation of [Fe(bztpen)Cl]ClO₄ by H₂O₂ in methanol.

Table S4: Second	l order rate co	nstants for the	e oxidation of	[Fe(bztpen)Cl]ClO ₄	by hydrogen	peroxide in
methanol calculated	from the initia	l slopes of the c	curved data plo	ots in Figure 1 as plot	ted in Figure 2.	

Temp. [°C]	$k [M^{-1} s^{-1}]$	Intercept [s ⁻¹]
-40°C	9.2 ± 0.3	0.13 ± 0.03
-35°C	12.8 ± 0.6	0.34 ± 0.06
-30°C	17.6 ± 0.9	0.57 ± 0.08
-25°C	31 ± 3	0.8 ± 0.3

Figure S3: k_{obs} vs. $[H_2O_2]$ to calculate the initial slopes and intercepts of the curved plots in Figure 1.

Figurre S5: "Eyring plot" for the oxidation of [Fe(bztpen)Cl]ClO₄ in methanol.

Figure S6: "Eyring plot" for the back reaction of the oxidation of [Fe(bztpen)Cl]ClO₄ in methanol.

Table S5: Activation parameters for the oxidation reaction of $[Fe(bztpen)Cl]ClO_4$ in methanol calculated from the "Eyring plots" in Figure 3 and Figure 4.

	$\Delta H^{\ddagger} [kJ mol^{-1}]$	$\Delta S^{\ddagger} [J \text{ mol}^{-1} \text{K}^{-1}]$
	37 ± 5	-68 ± 20
Back reaction	56 ± 9	(-19 ± 37)

The ΔS^{\ddagger} value for the back reaction has no meaning due to the large error limits, which are normal for calculations from intercepts.

Formation of [Fe(bztpen)OOH]²⁺

Table S6: Observed rate constants, k_{obs} (s⁻¹), for the reaction of the formation reaction of [Fe(bztpen)OOH]²⁺ in methanol calculated from absorbance *vs*. time traces at 550 nm. Each rate constant is an average of at least three measurements.

$[H_2O_2][M]$	20°C	25°C	30°C	35°C	40°C
0.01	0.0268 ± 0.0001	0.0380 ± 0.0001	0.0575 ± 0.0002	0.0856 ± 0.0003	0.1316 ± 0.0005
0.02	0.0365 ± 0.0001	0.0526 ± 0.0002	0.0800 ± 0.0002	0.1173 ± 0.0004	0.1805 ± 0.0004
0.04	0.0662 ± 0.0002	0.0927 ± 0.0002	0.1290 ± 0.0004	0.1830 ± 0.0004	0.2725 ± 0.0008
0.06	0.0873 ± 0.0002	0.1230 ± 0.0003	0.1772 ± 0.0004	0.2595 ± 0.0006	0.3643 ± 0.0008
0.08				0.3433 ± 0.0007	0.482 ± 0.001

Figure S6: k_{obs} vs. [H₂O₂] for the formation of [Fe(bztpen)OOH]²⁺

Table S7: Second order rate constants for the formation reaction of the iron(III) hydroperoxido complex with H_2O_2 in methanol calculated from slope of the straight lines.

Temp. [°C]	$k [M^{-1} s^{-1}]$	Intercept [s ⁻¹]
20	1.24 ± 0.07	0.014 ± 0.003
25	1.74 ± 0.08	0.020 ± 0.003
30	2.41 ± 0.01	0.0328 ± 0.0007
35	3.7 ± 0.1	0.044 ± 0.006

Figure S7: "Eyring plot" for the formation of [Fe(bztpen)OOH]²⁺.

Figure S8: "Eyring plot" for the back reaction of the formation of [Fe(bztpen)OOH]²⁺.

Table S8: Activation parameters for the formation reaction of hydroperoxido complex in methanol calculated from the "Eyring plots" in Figure 6 and Figure 7.

	$\Delta H^{\ddagger} [kJ mol^{-1}]$	$\Delta S^{\ddagger} [J \text{ mol}^{-1} \text{ K}^{-1}]$
	51 ± 2	-69 ± 5
Back reaction	62 ± 4	-68 ± 13

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

High pressure kinetics

Table S9: Observed rate constants, k_{obs} (s⁻¹), for the formation of [Fe(bztpen)OOH]²⁺ in methanol under high pressure conditions at 27 °C calculated from absorbance *vs.* time traces at 550 nm. Each rate constant is an average of at least three measurements.

[H ₂ O ₂] [M]	100 MPa	500 MPa	800 MPa	1100 MPa	1300 MPa
0.053	0.090	0.090	0.080	0.090	
0.080	0.128	0.125	0.123		0.122
0.106	0.171	0.166	0.163		0.152
0.133	0.193	0.197	0.188	0.199	0.192

Figure S9: $k_{obs} vs. [H_2O_2]$ for the formation of $[Fe(bztpen)OOH]^{2+}$ under high pressure conditions at 27°C (data point are average values over all pressures).

Table S10: Second order rate constants for the formation of $[Fe(bztpen)OOH]^{2+}$ with H_2O_2 in methanol under high pressure conditions calculated from the straight line.

Temp. [°C]	$k [M^{-1} s^{-1}]$	Intercept [s ⁻¹]
27	1.34 ± 0.05	0.0017 ± 0.0005