Luminescent Platinum Complexes Containing Phosphorus-linked Silole Ligands

Janet Braddock-Wilking,* Li-Bin Gao, and Nigam P. Rath * To whom correspondence should be addressed. E-mail: <u>wilkingj@umsl.edu</u>. Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121

14010 01 00110	
Pages S2-S4	Table S1. Crystal data and structure refinement for 13
Pages S3-S5	Table S2. Atomic coordinates and equivalent isotropic displacement parameters for 13
Pages S6-S18	Table S3. Bond lengths and angles for 13
Pages S19-	Table S4. Anisotropic displacement parameters for 13
S21	
Pages S22-	Table S5. Hydrogen coordinates and isotropic displacement parameters for 13
S23	
Pages S24-	Table S6. Torsion angles for 13
S29	

Table of contents for supporting information:

Identification code	w12908/lt/glb3	
Empirical formula	npirical formula $C_{146} H_{118} Cl_{18} O_2 P_4 Pt_2 Si_2$	
Formula weight	3112.74	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 22.261(4) Å	α=90°.
	b = 14.057(3) Å	β=98.290(7)°.
	c = 22.741(4) Å	$\gamma = 90^{\circ}$.
Volume	7042(2) Å ³	
Z	2	
Density (calculated)	1.468 Mg/m ³	
Absorption coefficient	2.439 mm ⁻¹	
F(000)	3120	
Crystal size	0.51 x 0.30 x 0.11 mm ³	
Theta range for data collection	2.59 to 27.60°.	
Index ranges	-28≤h≤26, -18≤k≤18, -29≤l≤29	
Reflections collected	157483	
Independent reflections	16135 [R(int) = 0.1008]	
Completeness to theta = 25.00°	99.8 %	
Absorption correction	Numerical	
Max. and min. transmission	0.7752 and 0.3704	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	16135 / 55 / 694	
Goodness-of-fit on F ²	1.177	
Final R indices [I>2sigma(I)]	R1 = 0.0761, $wR2 = 0.1796$	
R indices (all data)	R1 = 0.1409, wR2 = 0.2280	
Largest diff. peak and hole	3.332 and -3.139 e.Å ⁻³	

Table S1. Crystal data and structure refinement for 13.

	Х	у	Z	U(eq)
Pt(1)	8491(1)	8666(1)	9911(1)	31(1)
P(1)	7972(1)	9692(2)	9219(1)	28(1)
P(2)	8605(1)	9655(2)	10731(1)	34(1)
Si(1)	4632(1)	10024(2)	8855(1)	27(1)
C(1)	8975(4)	7665(6)	10400(5)	36(2)
C(2)	9308(5)	7049(7)	10632(5)	41(3)
C(3)	9740(5)	6349(8)	10909(5)	45(3)
C(4)	9836(5)	6233(9)	11517(6)	50(3)
C(5)	10251(6)	5555(12)	11766(7)	70(4)
C(6)	10592(6)	5048(11)	11450(7)	72(4)
C(7)	10533(6)	5177(11)	10846(8)	73(4)
C(8)	10112(5)	5853(9)	10570(6)	58(3)
C(9)	8301(4)	7678(6)	9273(4)	31(2)
C(10)	8089(4)	7089(7)	8913(4)	35(2)
C(11)	7809(7)	6440(13)	8492(7)	82(2)
C(12)	7840(7)	5458(13)	8563(7)	82(2)
C(13)	7564(7)	4859(13)	8107(7)	82(2)
C(14)	7257(7)	5234(13)	7606(7)	82(2)
C(15)	7208(7)	6125(13)	7546(7)	82(2)
C(16)	7469(7)	6738(13)	7969(7)	82(2)
C(17)	8186(4)	9502(7)	8482(4)	33(2)
C(18)	8802(4)	9315(8)	8435(5)	40(3)
C(19)	8978(5)	9225(10)	7883(6)	56(3)
C(20)	8567(6)	9265(11)	7379(5)	61(4)
C(21)	7956(5)	9432(9)	7418(5)	47(3)
C(22)	7767(5)	9546(7)	7970(4)	35(2)
C(23)	8073(5)	10980(7)	9305(4)	33(2)
C(24)	7777(5)	11458(7)	9714(5)	38(2)
C(25)	7909(6)	12417(8)	9844(6)	54(3)
C(26)	8332(6)	12892(9)	9555(6)	60(4)
C(27)	8616(6)	12421(10)	9150(6)	60(4)

Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for **13**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	8493(5)	11468(8)	9022(5)	48(3)
C(29)	7150(4)	9529(7)	9124(4)	26(2)
C(30)	6924(4)	8666(7)	9322(4)	30(2)
C(31)	6303(4)	8510(7)	9259(4)	32(2)
C(32)	5880(4)	9177(7)	8992(4)	28(2)
C(33)	6115(4)	10023(7)	8799(4)	32(2)
C(34)	6737(4)	10197(7)	8864(4)	33(2)
C(35)	5213(4)	9042(7)	8942(4)	26(2)
C(36)	4911(4)	8215(7)	8989(5)	36(2)
C(37)	4247(4)	8312(7)	9017(6)	43(3)
C(38)	4003(4)	9186(7)	8980(4)	32(2)
C(39)	4509(5)	10531(9)	8095(5)	50(3)
C(40)	4806(4)	10983(7)	9415(5)	38(2)
C(41)	5191(6)	7244(9)	9030(7)	66(2)
C(42)	5470(5)	6894(9)	8540(7)	66(2)
C(43)	5770(6)	6022(9)	8585(7)	66(2)
C(44)	5765(6)	5488(9)	9112(7)	66(2)
C(45)	5497(5)	5839(9)	9590(7)	66(2)
C(46)	5214(6)	6709(9)	9546(7)	66(2)
C(47)	3915(4)	7354(5)	8997(5)	41(2)
C(48)	3861(5)	6733(7)	8517(4)	41(2)
C(49)	3576(5)	5859(6)	8551(4)	41(2)
C(50)	3346(5)	5606(5)	9066(5)	41(2)
C(51)	3400(5)	6227(7)	9546(4)	41(2)
C(52)	3685(5)	7101(6)	9512(4)	41(2)
C(47')	3891(8)	7593(13)	9413(9)	44(4)
C(48')	3770(9)	6703(15)	9156(8)	44(4)
C(49')	3497(9)	6004(11)	9459(9)	44(4)
C(50')	3345(8)	6194(12)	10019(9)	44(4)
C(51')	3466(8)	7084(14)	10276(8)	44(4)
C(52')	3739(8)	7783(11)	9973(9)	44(4)
C(53)	3360(4)	9451(7)	8998(4)	29(2)
C(54)	2869(4)	8861(7)	8799(4)	31(2)
C(55)	2270(4)	9098(8)	8857(4)	35(2)
C(56)	2146(4)	9959(8)	9118(4)	32(2)
C(57)	2624(4)	10583(7)	9290(4)	33(2)

C(58)	3218(4)	10330(7)	9228(4)	34(2)
C(59)	9089(4)	10685(8)	10697(5)	43(3)
C(60)	9395(4)	10781(8)	10203(5)	43(3)
C(61)	9815(5)	11502(9)	10172(7)	61(4)
C(62)	9919(6)	12150(10)	10632(9)	79(5)
C(63)	9618(6)	12092(12)	11107(8)	82(5)
C(64)	9215(5)	11350(10)	11154(7)	66(4)
C(65)	8952(7)	9126(11)	11425(6)	71(2)
C(66)	9583(7)	9064(11)	11541(6)	71(2)
C(67)	9870(7)	8659(11)	12048(6)	71(2)
C(68)	9536(7)	8287(11)	12444(6)	71(2)
C(69)	8895(7)	8324(11)	12347(6)	71(2)
C(70)	8609(7)	8735(11)	11829(6)	71(2)
C(1S)	7784(5)	16262(7)	10345(5)	62(4)
Cl(1)	7081(2)	16154(3)	9887(2)	91(2)
Cl(2)	8143(2)	15160(3)	10496(2)	84(1)
Cl(3)	7679(2)	16811(3)	11013(2)	86(1)
C(2S)	8168(5)	1910(11)	7438(6)	54(5)
Cl(4)	8669(3)	2855(5)	7635(3)	62(2)
Cl(5)	8124(4)	1661(3)	6678(2)	69(2)
Cl(6)	7442(2)	2147(3)	7633(2)	67(2)
C(2S')	8399(8)	1470(40)	6980(20)	160(50)
Cl(4')	8956(6)	1042(9)	6593(7)	85(5)
Cl(5')	7678(7)	1486(10)	6573(10)	124(8)
Cl(6')	8597(8)	2509(15)	7360(8)	86(6)
C(3S)	4522(7)	3986(18)	8364(7)	178(14)
Cl(7)	3923(4)	3312(7)	8670(4)	225(3)
Cl(8)	4240(4)	3976(7)	7554(4)	225(3)
Cl(9)	5169(4)	3177(7)	8439(4)	225(3)
O(1)	5970(20)	2880(20)	7619(10)	134(9)
O(2)	3436(13)	7078(13)	11211(7)	134(9)

Pt(1)-C(9)	2.009(9)
Pt(1)-C(1)	2.007(9)
Pt(1)-P(2)	2.311(3)
Pt(1)-P(1)	2.318(3)
P(1)-C(17)	1.826(10)
P(1)-C(29)	1.826(9)
P(1)-C(23)	1.832(10)
P(2)-C(65)	1.813(13)
P(2)-C(59)	1.813(11)
P(2)-C(56)#1	1.836(10)
Si(1)-C(39)	1.854(11)
Si(1)-C(40)	1.856(11)
Si(1)-C(35)	1.881(10)
Si(1)-C(38)	1.883(10)
C(1)-C(2)	1.211(10)
C(2)-C(3)	1.453(14)
C(3)-C(4)	1.377(16)
C(3)-C(8)	1.397(17)
C(4)-C(5)	1.391(18)
C(4)-H(4A)	0.9500
C(5)-C(6)	1.33(2)
C(5)-H(5A)	0.9500
C(6)-C(7)	1.37(2)
C(6)-H(6A)	0.9500
C(7)-C(8)	1.417(18)
C(7)-H(7A)	0.9500
C(8)-H(8A)	0.9500
C(9)-C(10)	1.211(10)
C(10)-C(11)	1.402(17)
C(11)-C(12)	1.39(2)
C(11)-C(16)	1.38(2)
C(12)-C(13)	1.406(19)
C(12)-H(12A)	0.9500
C(13)-C(14)	1.35(2)

Table S3. Bond lengths $[{\rm \AA}]$ and angles $[^{\circ}]$ for $\ensuremath{13}.$

C(13)-H(13A)	0.9500
C(14)-C(15)	1.26(2)
C(14)-H(14A)	0.9500
C(15)-C(16)	1.357(19)
C(15)-H(15A)	0.9500
C(16)-H(16A)	0.9500
C(17)-C(22)	1.384(14)
C(17)-C(18)	1.416(13)
C(18)-C(19)	1.373(15)
C(18)-H(18A)	0.9500
C(19)-C(20)	1.360(17)
С(19)-Н(19А)	0.9500
C(20)-C(21)	1.395(16)
C(20)-H(20A)	0.9500
C(21)-C(22)	1.391(14)
C(21)-H(21A)	0.9500
C(22)-H(22A)	0.9500
C(23)-C(24)	1.388(15)
C(23)-C(28)	1.390(15)
C(24)-C(25)	1.402(15)
C(24)-H(24A)	0.9500
C(25)-C(26)	1.393(18)
С(25)-Н(25А)	0.9500
C(26)-C(27)	1.362(19)
C(26)-H(26A)	0.9500
C(27)-C(28)	1.390(17)
С(27)-Н(27А)	0.9500
C(28)-H(28A)	0.9500
C(29)-C(34)	1.386(13)
C(29)-C(30)	1.411(13)
C(30)-C(31)	1.387(12)
С(30)-Н(30А)	0.9500
C(31)-C(32)	1.404(13)
C(31)-H(31A)	0.9500
C(32)-C(33)	1.395(13)
C(32)-C(35)	1.485(12)

C(33)-C(34)	1.392(12)
C(33)-H(33A)	0.9500
C(34)-H(34A)	0.9500
C(35)-C(36)	1.355(14)
C(36)-C(37)	1.495(13)
C(36)-C(41)	1.498(16)
C(37)-C(38)	1.341(14)
C(37)-C(47)	1.533(12)
C(37)-C(47')	1.633(17)
C(38)-C(53)	1.487(13)
C(39)-H(39A)	0.9800
C(39)-H(39B)	0.9800
С(39)-Н(39С)	0.9800
C(40)-H(40A)	0.9800
C(40)-H(40B)	0.9800
C(40)-H(40C)	0.9800
C(41)-C(46)	1.39(2)
C(41)-C(42)	1.44(2)
C(42)-C(43)	1.393(17)
C(42)-H(42A)	0.9500
C(43)-C(44)	1.42(2)
C(43)-H(43A)	0.9500
C(44)-C(45)	1.40(2)
C(44)-H(44A)	0.9500
C(45)-C(46)	1.371(17)
C(45)-H(45A)	0.9500
C(46)-H(46A)	0.9500
C(47)-C(48)	1.3900
C(47)-C(52)	1.3900
C(48)-C(49)	1.3900
C(48)-H(48A)	0.9500
C(49)-C(50)	1.3900
C(49)-H(49A)	0.9500
C(50)-C(51)	1.3900
C(50)-H(50A)	0.9500
C(51)-C(52)	1.3900

C(51)-H(51A)	0.9500
C(52)-H(52A)	0.9500
C(47')-C(48')	1.3900
C(47')-C(52')	1.3900
C(48')-C(49')	1.3900
C(48')-H(48')	0.9500
C(49')-C(50')	1.3900
C(49')-H(49')	0.9500
C(50')-C(51')	1.3900
С(50')-Н(50')	0.9500
C(51')-C(52')	1.3900
С(51')-Н(51')	0.9500
С(52')-Н(52')	0.9500
C(53)-C(58)	1.396(14)
C(53)-C(54)	1.395(13)
C(54)-C(55)	1.399(13)
C(54)-H(54A)	0.9500
C(55)-C(56)	1.392(14)
С(55)-Н(55А)	0.9500
C(56)-C(57)	1.391(13)
C(56)-P(2)#1	1.836(10)
C(57)-C(58)	1.395(13)
С(57)-Н(57А)	0.9500
C(58)-H(58A)	0.9500
C(59)-C(64)	1.395(16)
C(59)-C(60)	1.401(16)
C(60)-C(61)	1.388(15)
C(60)-H(60A)	0.9500
C(61)-C(62)	1.38(2)
C(61)-H(61A)	0.9500
C(62)-C(63)	1.35(2)
C(62)-H(62A)	0.9500
C(63)-C(64)	1.39(2)
C(63)-H(63A)	0.9500
C(64)-H(64A)	0.9500
C(65)-C(70)	1.39(2)

C(65)-C(66)	1.39(2)
C(66)-C(67)	1.360(17)
C(66)-H(66A)	0.9500
C(67)-C(68)	1.35(2)
C(67)-H(67A)	0.9500
C(68)-C(69)	1.41(2)
C(68)-H(68A)	0.9500
C(69)-C(70)	1.382(17)
C(69)-H(69A)	0.9500
C(70)-H(70A)	0.9500
C(1S)-Cl(3)	1.748(10)
C(1S)-Cl(2)	1.754(10)
C(1S)-Cl(1)	1.758(9)
C(1S)-H(1S)	1.0000
C(2S)-Cl(5)	1.751(12)
C(2S)-Cl(4)	1.752(12)
C(2S)-Cl(6)	1.768(12)
C(2S)-H(2S)	1.0000
C(2S')-Cl(6')	1.72(2)
C(2S')-Cl(4')	1.72(2)
C(2S')-Cl(5')	1.73(2)
C(2S')-H(2S')	1.0000
C(3S)-Cl(9)	1.823(15)
C(3S)-Cl(7)	1.852(17)
C(3S)-Cl(8)	1.860(17)
C(3S)-H(3S)	1.0000
C(9)-Pt(1)-C(1)	87.5(4)
C(9)-Pt(1)-P(2)	170.4(3)
C(1)-Pt(1)-P(2)	89.3(3)
C(9)-Pt(1)-P(1)	84.7(3)
C(1)-Pt(1)-P(1)	171.0(3)
P(2)-Pt(1)-P(1)	99.17(9)
C(17)-P(1)-C(29)	105.3(4)
C(17)-P(1)-C(23)	101.4(5)
C(29)-P(1)-C(23)	104.1(5)

C(17)-P(1)-Pt(1)	111.2(3)
C(29)-P(1)-Pt(1)	113.3(3)
C(23)-P(1)-Pt(1)	120.1(3)
C(65)-P(2)-C(59)	100.5(7)
C(65)-P(2)-C(56)#1	104.1(6)
C(59)-P(2)-C(56)#1	109.6(5)
C(65)-P(2)-Pt(1)	116.0(5)
C(59)-P(2)-Pt(1)	116.3(4)
C(56)#1-P(2)-Pt(1)	109.4(3)
C(39)-Si(1)-C(40)	110.4(6)
C(39)-Si(1)-C(35)	112.8(5)
C(40)-Si(1)-C(35)	112.8(4)
C(39)-Si(1)-C(38)	111.6(5)
C(40)-Si(1)-C(38)	115.9(5)
C(35)-Si(1)-C(38)	92.3(4)
C(2)-C(1)-Pt(1)	171.4(10)
C(1)-C(2)-C(3)	176.4(11)
C(4)-C(3)-C(8)	118.5(11)
C(4)-C(3)-C(2)	120.8(11)
C(8)-C(3)-C(2)	120.4(11)
C(3)-C(4)-C(5)	119.2(13)
C(3)-C(4)-H(4A)	120.4
C(5)-C(4)-H(4A)	120.4
C(6)-C(5)-C(4)	123.1(14)
C(6)-C(5)-H(5A)	118.4
C(4)-C(5)-H(5A)	118.4
C(5)-C(6)-C(7)	119.5(13)
C(5)-C(6)-H(6A)	120.3
C(7)-C(6)-H(6A)	120.3
C(6)-C(7)-C(8)	119.6(14)
C(6)-C(7)-H(7A)	120.2
C(8)-C(7)-H(7A)	120.2
C(3)-C(8)-C(7)	119.8(13)
C(3)-C(8)-H(8A)	120.1
C(7)-C(8)-H(8A)	120.1
C(10)-C(9)-Pt(1)	169.0(8)

C(9)-C(10)-C(11)	176.3(12)
C(12)-C(11)-C(16)	114.4(14)
C(12)-C(11)-C(10)	123.8(15)
C(16)-C(11)-C(10)	121.8(16)
C(11)-C(12)-C(13)	120.0(17)
C(11)-C(12)-H(12A)	120.0
C(13)-C(12)-H(12A)	120.0
C(14)-C(13)-C(12)	120.2(18)
C(14)-C(13)-H(13A)	119.9
C(12)-C(13)-H(13A)	119.9
C(15)-C(14)-C(13)	120.2(16)
C(15)-C(14)-H(14A)	119.9
C(13)-C(14)-H(14A)	119.9
C(14)-C(15)-C(16)	122.1(19)
C(14)-C(15)-H(15A)	118.9
C(16)-C(15)-H(15A)	118.9
C(15)-C(16)-C(11)	122.9(18)
C(15)-C(16)-H(16A)	118.5
С(11)-С(16)-Н(16А)	118.5
C(22)-C(17)-C(18)	119.1(9)
C(22)-C(17)-P(1)	122.2(7)
C(18)-C(17)-P(1)	118.8(8)
C(19)-C(18)-C(17)	119.6(10)
C(19)-C(18)-H(18A)	120.2
C(17)-C(18)-H(18A)	120.2
C(20)-C(19)-C(18)	121.4(11)
C(20)-C(19)-H(19A)	119.3
C(18)-C(19)-H(19A)	119.3
C(19)-C(20)-C(21)	119.8(11)
C(19)-C(20)-H(20A)	120.1
C(21)-C(20)-H(20A)	120.1
C(22)-C(21)-C(20)	120.0(10)
C(22)-C(21)-H(21A)	120.0
C(20)-C(21)-H(21A)	120.0
C(17)-C(22)-C(21)	120.1(10)
C(17)-C(22)-H(22A)	120.0

C(21)-C(22)-H(22A)	120.0
C(24)-C(23)-C(28)	119.2(10)
C(24)-C(23)-P(1)	119.1(8)
C(28)-C(23)-P(1)	121.2(9)
C(23)-C(24)-C(25)	120.0(10)
C(23)-C(24)-H(24A)	120.0
C(25)-C(24)-H(24A)	120.0
C(26)-C(25)-C(24)	119.8(12)
C(26)-C(25)-H(25A)	120.1
C(24)-C(25)-H(25A)	120.1
C(25)-C(26)-C(27)	119.8(12)
C(25)-C(26)-H(26A)	120.1
C(27)-C(26)-H(26A)	120.1
C(26)-C(27)-C(28)	120.9(12)
C(26)-C(27)-H(27A)	119.5
C(28)-C(27)-H(27A)	119.5
C(27)-C(28)-C(23)	120.3(12)
C(27)-C(28)-H(28A)	119.9
C(23)-C(28)-H(28A)	119.9
C(34)-C(29)-C(30)	118.3(8)
C(34)-C(29)-P(1)	123.8(7)
C(30)-C(29)-P(1)	117.9(7)
C(31)-C(30)-C(29)	119.9(9)
С(31)-С(30)-Н(30А)	120.1
С(29)-С(30)-Н(30А)	120.1
C(30)-C(31)-C(32)	122.4(9)
C(30)-C(31)-H(31A)	118.8
C(32)-C(31)-H(31A)	118.8
C(33)-C(32)-C(31)	116.5(8)
C(33)-C(32)-C(35)	120.1(8)
C(31)-C(32)-C(35)	123.2(9)
C(34)-C(33)-C(32)	121.9(9)
C(34)-C(33)-H(33A)	119.0
C(32)-C(33)-H(33A)	119.0
C(29)-C(34)-C(33)	120.9(9)
C(29)-C(34)-H(34A)	119.5

C(33)-C(34)-H(34A)	119.5
C(36)-C(35)-C(32)	127.3(9)
C(36)-C(35)-Si(1)	107.2(6)
C(32)-C(35)-Si(1)	125.4(7)
C(35)-C(36)-C(37)	115.5(9)
C(35)-C(36)-C(41)	125.5(9)
C(37)-C(36)-C(41)	119.0(9)
C(38)-C(37)-C(36)	118.3(9)
C(38)-C(37)-C(47)	127.8(9)
C(36)-C(37)-C(47)	113.3(9)
C(38)-C(37)-C(47')	112.1(11)
C(36)-C(37)-C(47')	121.9(10)
C(47)-C(37)-C(47')	37.1(8)
C(37)-C(38)-C(53)	127.7(9)
C(37)-C(38)-Si(1)	106.2(7)
C(53)-C(38)-Si(1)	126.0(7)
Si(1)-C(39)-H(39A)	109.5
Si(1)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39B)	109.5
Si(1)-C(39)-H(39C)	109.5
H(39A)-C(39)-H(39C)	109.5
H(39B)-C(39)-H(39C)	109.5
Si(1)-C(40)-H(40A)	109.5
Si(1)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
Si(1)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
C(46)-C(41)-C(42)	120.1(12)
C(46)-C(41)-C(36)	120.7(14)
C(42)-C(41)-C(36)	119.1(13)
C(43)-C(42)-C(41)	120.1(15)
C(43)-C(42)-H(42A)	119.9
C(41)-C(42)-H(42A)	119.9
C(42)-C(43)-C(44)	117.7(15)
C(42)-C(43)-H(43A)	121.1

C(44)-C(43)-H(43A)	121.1
C(45)-C(44)-C(43)	121.7(13)
C(45)-C(44)-H(44A)	119.1
C(43)-C(44)-H(44A)	119.1
C(46)-C(45)-C(44)	119.9(15)
C(46)-C(45)-H(45A)	120.0
C(44)-C(45)-H(45A)	120.0
C(45)-C(46)-C(41)	120.3(15)
C(45)-C(46)-H(46A)	119.9
C(41)-C(46)-H(46A)	119.9
C(48)-C(47)-C(52)	120.0
C(48)-C(47)-C(37)	124.2(8)
C(52)-C(47)-C(37)	115.8(8)
C(49)-C(48)-C(47)	120.0
C(49)-C(48)-H(48A)	120.0
C(47)-C(48)-H(48A)	120.0
C(48)-C(49)-C(50)	120.0
C(48)-C(49)-H(49A)	120.0
C(50)-C(49)-H(49A)	120.0
C(51)-C(50)-C(49)	120.0
C(51)-C(50)-H(50A)	120.0
C(49)-C(50)-H(50A)	120.0
C(50)-C(51)-C(52)	120.0
C(50)-C(51)-H(51A)	120.0
C(52)-C(51)-H(51A)	120.0
C(51)-C(52)-C(47)	120.0
C(51)-C(52)-H(52A)	120.0
C(47)-C(52)-H(52A)	120.0
C(48')-C(47')-C(52')	120.0
C(48')-C(47')-C(37)	113.9(13)
C(52')-C(47')-C(37)	126.0(13)
C(47')-C(48')-C(49')	120.0
C(47')-C(48')-H(48')	120.0
C(49')-C(48')-H(48')	120.0
C(48')-C(49')-C(50')	120.0
C(48')-C(49')-H(49')	120.0

C(50')-C(49')-H(49')	120.0
C(51')-C(50')-C(49')	120.0
С(51')-С(50')-Н(50')	120.0
C(49')-C(50')-H(50')	120.0
C(52')-C(51')-C(50')	120.0
C(52')-C(51')-H(51')	120.0
C(50')-C(51')-H(51')	120.0
C(51')-C(52')-C(47')	120.0
С(51')-С(52')-Н(52')	120.0
C(47')-C(52')-H(52')	120.0
C(58)-C(53)-C(54)	116.0(8)
C(58)-C(53)-C(38)	120.3(8)
C(54)-C(53)-C(38)	123.7(9)
C(53)-C(54)-C(55)	122.7(9)
C(53)-C(54)-H(54A)	118.6
C(55)-C(54)-H(54A)	118.6
C(56)-C(55)-C(54)	119.8(9)
C(56)-C(55)-H(55A)	120.1
C(54)-C(55)-H(55A)	120.1
C(57)-C(56)-C(55)	118.5(9)
C(57)-C(56)-P(2)#1	116.2(8)
C(55)-C(56)-P(2)#1	125.3(7)
C(56)-C(57)-C(58)	120.6(9)
С(56)-С(57)-Н(57А)	119.7
C(58)-C(57)-H(57A)	119.7
C(53)-C(58)-C(57)	122.2(9)
C(53)-C(58)-H(58A)	118.9
C(57)-C(58)-H(58A)	118.9
C(64)-C(59)-C(60)	117.6(11)
C(64)-C(59)-P(2)	124.1(10)
C(60)-C(59)-P(2)	118.1(8)
C(61)-C(60)-C(59)	121.3(12)
C(61)-C(60)-H(60A)	119.3
C(59)-C(60)-H(60A)	119.3
C(62)-C(61)-C(60)	118.9(14)
C(62)-C(61)-H(61A)	120.5

C(60)-C(61)-H(61A)	120.5
C(63)-C(62)-C(61)	121.1(13)
C(63)-C(62)-H(62A)	119.4
C(61)-C(62)-H(62A)	119.4
C(62)-C(63)-C(64)	120.4(13)
C(62)-C(63)-H(63A)	119.8
C(64)-C(63)-H(63A)	119.8
C(59)-C(64)-C(63)	120.5(14)
C(59)-C(64)-H(64A)	119.7
C(63)-C(64)-H(64A)	119.7
C(70)-C(65)-C(66)	119.0(13)
C(70)-C(65)-P(2)	122.1(11)
C(66)-C(65)-P(2)	118.8(13)
C(67)-C(66)-C(65)	121.6(16)
C(67)-C(66)-H(66A)	119.2
C(65)-C(66)-H(66A)	119.2
C(68)-C(67)-C(66)	119.4(15)
C(68)-C(67)-H(67A)	120.3
C(66)-C(67)-H(67A)	120.3
C(67)-C(68)-C(69)	121.4(13)
C(67)-C(68)-H(68A)	119.3
C(69)-C(68)-H(68A)	119.3
C(70)-C(69)-C(68)	118.7(16)
C(70)-C(69)-H(69A)	120.7
C(68)-C(69)-H(69A)	120.7
C(65)-C(70)-C(69)	119.9(14)
C(65)-C(70)-H(70A)	120.0
C(69)-C(70)-H(70A)	120.0
Cl(3)-C(1S)-Cl(2)	109.5(6)
Cl(3)-C(1S)-Cl(1)	109.5(6)
Cl(2)-C(1S)-Cl(1)	112.4(6)
Cl(3)-C(1S)-H(1S)	108.4
Cl(2)-C(1S)-H(1S)	108.4
Cl(1)-C(1S)-H(1S)	108.4
Cl(5)-C(2S)-Cl(4)	110.3(8)
Cl(5)-C(2S)-Cl(6)	111.3(8)

Cl(4)-C(2S)-Cl(6)	111.3(8)
Cl(5)-C(2S)-H(2S)	107.9
Cl(4)-C(2S)-H(2S)	107.9
Cl(6)-C(2S)-H(2S)	107.9
Cl(6')-C(2S')-Cl(4')	114(2)
Cl(6')-C(2S')-Cl(5')	114(2)
Cl(4')-C(2S')-Cl(5')	115(2)
Cl(6')-C(2S')-H(2S')	104.2
Cl(4')-C(2S')-H(2S')	104.2
Cl(5')-C(2S')-H(2S')	104.2
Cl(9)-C(3S)-Cl(7)	104.3(11)
Cl(9)-C(3S)-Cl(8)	103.7(10)
Cl(7)-C(3S)-Cl(8)	102.1(11)
Cl(9)-C(3S)-H(3S)	115.0
Cl(7)-C(3S)-H(3S)	115.0
Cl(8)-C(3S)-H(3S)	115.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pt(1)	18(1)	39(1)	34(1)	-1(1)	-2(1)	-6(1)
P(1)	19(1)	35(1)	31(1)	-3(1)	4(1)	-8(1)
P(2)	18(1)	46(2)	34(1)	-4(1)	-6(1)	-1(1)
Si(1)	19(1)	32(1)	30(1)	3(1)	-1(1)	-6(1)
C(1)	18(4)	23(5)	62(7)	-5(5)	-6(4)	-12(4)
C(2)	38(6)	29(5)	51(7)	-5(5)	-7(5)	-7(4)
C(3)	36(6)	35(5)	59(7)	2(6)	-6(5)	-3(5)
C(4)	35(6)	60(8)	56(7)	5(6)	7(5)	-4(5)
C(5)	45(8)	93(11)	71(9)	32(9)	1(7)	-2(8)
C(6)	50(8)	74(10)	87(11)	17(9)	-5(8)	18(7)
C(7)	41(7)	72(10)	103(13)	0(9)	1(8)	10(7)
C(8)	41(7)	57(8)	73(9)	-2(7)	-1(6)	6(6)
C(9)	20(4)	23(5)	48(6)	1(4)	0(4)	-2(4)
C(10)	27(5)	38(6)	43(6)	-3(5)	11(4)	-3(4)
C(11)	71(4)	97(5)	75(4)	-37(4)	1(3)	-15(4)
C(12)	71(4)	97(5)	75(4)	-37(4)	1(3)	-15(4)
C(13)	71(4)	97(5)	75(4)	-37(4)	1(3)	-15(4)
C(14)	71(4)	97(5)	75(4)	-37(4)	1(3)	-15(4)
C(15)	71(4)	97(5)	75(4)	-37(4)	1(3)	-15(4)
C(16)	71(4)	97(5)	75(4)	-37(4)	1(3)	-15(4)
C(17)	27(5)	37(5)	36(5)	-4(4)	8(4)	-6(4)
C(18)	24(5)	60(7)	36(6)	6(5)	4(4)	-2(5)
C(19)	31(6)	83(10)	57(8)	0(7)	14(6)	3(6)
C(20)	54(8)	94(11)	37(6)	-1(7)	17(6)	10(7)
C(21)	41(6)	68(8)	33(6)	1(5)	2(5)	4(6)
C(22)	30(5)	41(6)	34(5)	6(4)	6(4)	3(4)
C(23)	37(5)	28(5)	34(5)	-2(4)	1(4)	-6(4)
C(24)	37(5)	40(6)	37(5)	1(5)	3(4)	-10(5)
C(25)	67(8)	33(6)	60(8)	-6(6)	4(6)	-1(6)
C(26)	73(9)	37(7)	68(9)	12(6)	-1(7)	-17(6)
C(27)	65(8)	64(9)	54(8)	3(7)	16(7)	-31(7)

Table S4. Anisotropic displacement parameters (Å²x 10³) for **13**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(28)	46(6)	49(7)	46(6)	8(5)	3(5)	-20(5)
C(29)	19(4)	34(5)	27(5)	-2(4)	4(4)	-2(4)
C(30)	27(5)	34(5)	26(4)	1(4)	0(4)	-5(4)
C(31)	24(4)	45(6)	27(5)	9(4)	6(4)	-8(4)
C(32)	23(4)	37(5)	24(4)	-8(4)	2(4)	1(4)
C(33)	19(4)	37(5)	39(5)	-1(4)	4(4)	-5(4)
C(34)	24(5)	30(5)	43(6)	-6(4)	2(4)	-3(4)
C(35)	20(4)	35(5)	23(4)	-3(4)	2(3)	-3(4)
C(36)	21(5)	37(5)	46(6)	-2(5)	-3(4)	0(4)
C(37)	21(5)	29(5)	75(8)	7(5)	-6(5)	-8(4)
C(38)	21(4)	38(6)	36(5)	-4(4)	0(4)	-3(4)
C(39)	31(6)	65(8)	50(7)	16(6)	-2(5)	-7(5)
C(40)	24(5)	31(5)	56(7)	-1(5)	-4(5)	0(4)
C(41)	39(3)	42(3)	106(5)	-4(3)	-19(3)	1(2)
C(42)	39(3)	42(3)	106(5)	-4(3)	-19(3)	1(2)
C(43)	39(3)	42(3)	106(5)	-4(3)	-19(3)	1(2)
C(44)	39(3)	42(3)	106(5)	-4(3)	-19(3)	1(2)
C(45)	39(3)	42(3)	106(5)	-4(3)	-19(3)	1(2)
C(46)	39(3)	42(3)	106(5)	-4(3)	-19(3)	1(2)
C(47)	25(3)	34(4)	63(5)	0(3)	6(3)	-4(3)
C(48)	25(3)	34(4)	63(5)	0(3)	6(3)	-4(3)
C(49)	25(3)	34(4)	63(5)	0(3)	6(3)	-4(3)
C(50)	25(3)	34(4)	63(5)	0(3)	6(3)	-4(3)
C(51)	25(3)	34(4)	63(5)	0(3)	6(3)	-4(3)
C(52)	25(3)	34(4)	63(5)	0(3)	6(3)	-4(3)
C(47')	16(6)	47(8)	64(9)	15(7)	-6(5)	-2(5)
C(48')	16(6)	47(8)	64(9)	15(7)	-6(5)	-2(5)
C(49')	16(6)	47(8)	64(9)	15(7)	-6(5)	-2(5)
C(50')	16(6)	47(8)	64(9)	15(7)	-6(5)	-2(5)
C(51')	16(6)	47(8)	64(9)	15(7)	-6(5)	-2(5)
C(52')	16(6)	47(8)	64(9)	15(7)	-6(5)	-2(5)
C(53)	25(5)	35(5)	27(5)	9(4)	3(4)	-1(4)
C(54)	17(4)	38(6)	36(5)	-2(4)	-4(4)	1(4)
C(55)	22(5)	47(6)	31(5)	-1(5)	-6(4)	-5(4)
C(56)	20(4)	49(6)	26(5)	5(4)	-4(4)	4(4)
C(57)	26(5)	37(5)	34(5)	-3(4)	1(4)	-3(4)

C(58)	20(5)	43(6)	37(5)	-2(5)	-1(4)	-10(4)
C(59)	18(5)	58(7)	52(7)	-16(6)	-1(4)	-9(5)
C(60)	19(5)	44(6)	64(7)	3(5)	0(5)	-6(4)
C(61)	23(5)	63(8)	96(10)	-5(7)	3(6)	-20(5)
C(62)	31(7)	58(9)	144(16)	-15(10)	-6(8)	-17(6)
C(63)	37(7)	95(12)	110(13)	-57(10)	-10(8)	-17(7)
C(64)	25(5)	87(10)	83(10)	-39(8)	-6(6)	-12(6)
C(65)	70(4)	85(4)	48(3)	-11(3)	-24(3)	28(3)
C(66)	70(4)	85(4)	48(3)	-11(3)	-24(3)	28(3)
C(67)	70(4)	85(4)	48(3)	-11(3)	-24(3)	28(3)
C(68)	70(4)	85(4)	48(3)	-11(3)	-24(3)	28(3)
C(69)	70(4)	85(4)	48(3)	-11(3)	-24(3)	28(3)
C(70)	70(4)	85(4)	48(3)	-11(3)	-24(3)	28(3)
C(1S)	56(8)	71(9)	56(8)	17(7)	-5(6)	-32(7)
Cl(1)	66(2)	112(3)	85(3)	48(2)	-24(2)	-51(2)
Cl(2)	77(3)	61(2)	109(3)	14(2)	-6(2)	-26(2)
Cl(3)	100(3)	89(3)	71(2)	18(2)	20(2)	-29(2)
C(2S)	44(10)	38(10)	72(13)	13(9)	-14(9)	0(8)
Cl(4)	59(3)	70(4)	54(4)	13(3)	-8(3)	-24(3)
Cl(5)	103(6)	42(3)	54(3)	8(2)	-10(3)	0(3)
Cl(6)	52(3)	50(3)	92(4)	7(2)	-16(2)	-6(2)
C(2S')	50(30)	50(30)	350(140)	40(60)	-70(60)	10(30)
Cl(4')	55(7)	69(8)	123(12)	22(8)	-17(7)	-29(6)
Cl(5')	57(8)	62(9)	220(20)	7(10)	-73(11)	7(7)
Cl(6')	66(9)	108(14)	73(11)	41(10)	-24(8)	-28(9)
C(3S)	260(30)	130(20)	180(20)	61(18)	170(20)	80(20)
Cl(7)	319(8)	207(5)	165(4)	45(4)	89(5)	97(5)
Cl(8)	319(8)	207(5)	165(4)	45(4)	89(5)	97(5)
Cl(9)	319(8)	207(5)	165(4)	45(4)	89(5)	97(5)
O(1)	280(20)	76(10)	33(7)	2(7)	-3(10)	109(13)
O(2)	280(20)	76(10)	33(7)	2(7)	-3(10)	109(13)

	Х	У	Z	U(eq)
H(4A)	9621	6612	11763	60
H(5A)	10293	5450	12183	85
H(6A)	10874	4598	11640	86
H(7A)	10773	4815	10615	87
H(8A)	10082	5969	10155	69
H(12A)	8048	5192	8919	99
H(13A)	7595	4188	8152	99
H(14A)	7077	4826	7297	99
H(15A)	6981	6374	7194	99
H(16A)	7416	7401	7901	99
H(18A)	9092	9252	8782	48
H(19A)	9395	9133	7853	67
H(20A)	8696	9180	7002	73
H(21A)	7669	9467	7066	57
H(22A)	7351	9655	7996	42
H(24A)	7485	11135	9907	46
H(25A)	7711	12742	10128	65
H(26A)	8423	13543	9641	72
H(27A)	8902	12749	8952	73
H(28A)	8697	11148	8741	57
H(30A)	7197	8193	9499	35
H(31A)	6158	7930	9402	38
H(33A)	5843	10493	8617	38
H(34A)	6880	10782	8728	39
H(39A)	4847	10957	8044	74
H(39B)	4128	10889	8036	74
H(39C)	4489	10015	7803	74
H(40A)	5139	11375	9311	57
H(40B)	4926	10700	9808	57
H(40C)	4445	11380	9421	57

Table S5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{-3}$) for 13.

H(42A)	5451	7259	8186	79
H(43A)	5972	5793	8272	79
H(44A)	5947	4875	9143	79
H(45A)	5511	5475	9944	79
H(46A)	5033	6946	9871	79
H(48A)	4018	6907	8165	49
H(49A)	3539	5434	8223	49
H(50A)	3152	5008	9089	49
H(51A)	3243	6053	9898	49
H(52A)	3722	7526	9840	49
H(48')	3874	6573	8774	52
H(49')	3414	5396	9284	52
H(50')	3158	5716	10226	52
H(51')	3361	7214	10659	52
H(52')	3821	8391	10148	52
H(54A)	2944	8275	8615	37
H(55A)	1948	8672	8720	41
H(57A)	2546	11186	9452	39
H(58A)	3535	10771	9346	41
H(60A)	9312	10344	9883	51
H(61A)	10027	11549	9840	73
H(62A)	10207	12645	10615	95
H(63A)	9683	12561	11410	99
H(64A)	9024	11295	11500	80
H(66A)	9818	9310	11258	85
H(67A)	10301	8638	12123	85
H(68A)	9737	7994	12794	85
H(69A)	8666	8072	12632	85
H(70A)	8178	8750	11749	85
H(1S)	8055	16675	10139	75
H(2S)	8334	1334	7663	64
H(2S')	8374	989	7293	190
H(3S)	4610	4632	8541	214

Table S6. Torsion angles [°] for **13**.

C(9)-Pt(1)-P(1)-C(17)	-43.4(4)
C(1)-Pt(1)-P(1)-C(17)	-14.3(17)
P(2)-Pt(1)-P(1)-C(17)	145.5(3)
C(9)-Pt(1)-P(1)-C(29)	74.9(4)
C(1)-Pt(1)-P(1)-C(29)	104.0(16)
P(2)-Pt(1)-P(1)-C(29)	-96.3(3)
C(9)-Pt(1)-P(1)-C(23)	-161.4(5)
C(1)-Pt(1)-P(1)-C(23)	-132.3(16)
P(2)-Pt(1)-P(1)-C(23)	27.4(4)
C(9)-Pt(1)-P(2)-C(65)	62.8(17)
C(1)-Pt(1)-P(2)-C(65)	-7.4(7)
P(1)-Pt(1)-P(2)-C(65)	175.7(6)
C(9)-Pt(1)-P(2)-C(59)	-179(23)
C(1)-Pt(1)-P(2)-C(59)	110.5(5)
P(1)-Pt(1)-P(2)-C(59)	-66.4(4)
C(9)-Pt(1)-P(2)-C(56)#1	-54.6(16)
C(1)-Pt(1)-P(2)-C(56)#1	-124.8(4)
P(1)-Pt(1)-P(2)-C(56)#1	58.3(4)
C(9)-Pt(1)-C(1)-C(2)	56(5)
P(2)-Pt(1)-C(1)-C(2)	-133(5)
P(1)-Pt(1)-C(1)-C(2)	27(6)
Pt(1)-C(1)-C(2)-C(3)	64(22)
C(1)-C(2)-C(3)-C(4)	97(20)
C(1)-C(2)-C(3)-C(8)	-76(20)
C(8)-C(3)-C(4)-C(5)	-6.8(17)
C(2)-C(3)-C(4)-C(5)	179.8(11)
C(3)-C(4)-C(5)-C(6)	4(2)
C(4)-C(5)-C(6)-C(7)	-1(2)
C(5)-C(6)-C(7)-C(8)	0(2)
C(4)-C(3)-C(8)-C(7)	6.3(18)
C(2)-C(3)-C(8)-C(7)	179.7(11)
C(6)-C(7)-C(8)-C(3)	-3(2)
C(1)-Pt(1)-C(9)-C(10)	109(5)
P(2)-Pt(1)-C(9)-C(10)	39(6)

P(1)-Pt(1)-C(9)-C(10)	-75(5)
Pt(1)-C(9)-C(10)-C(11)	36(23)
C(9)-C(10)-C(11)-C(12)	-134(20)
C(9)-C(10)-C(11)-C(16)	45(21)
C(16)-C(11)-C(12)-C(13)	3(2)
C(10)-C(11)-C(12)-C(13)	-177.6(14)
C(11)-C(12)-C(13)-C(14)	-2(3)
C(12)-C(13)-C(14)-C(15)	-1(3)
C(13)-C(14)-C(15)-C(16)	2(3)
C(14)-C(15)-C(16)-C(11)	0(3)
C(12)-C(11)-C(16)-C(15)	-3(3)
C(10)-C(11)-C(16)-C(15)	178.1(15)
C(29)-P(1)-C(17)-C(22)	18.4(10)
C(23)-P(1)-C(17)-C(22)	-89.8(9)
Pt(1)-P(1)-C(17)-C(22)	141.4(8)
C(29)-P(1)-C(17)-C(18)	-162.4(8)
C(23)-P(1)-C(17)-C(18)	89.4(9)
Pt(1)-P(1)-C(17)-C(18)	-39.4(9)
C(22)-C(17)-C(18)-C(19)	3.0(17)
P(1)-C(17)-C(18)-C(19)	-176.2(10)
C(17)-C(18)-C(19)-C(20)	-3(2)
C(18)-C(19)-C(20)-C(21)	2(2)
C(19)-C(20)-C(21)-C(22)	-1(2)
C(18)-C(17)-C(22)-C(21)	-1.6(16)
P(1)-C(17)-C(22)-C(21)	177.6(9)
C(20)-C(21)-C(22)-C(17)	0.4(18)
C(17)-P(1)-C(23)-C(24)	159.3(8)
C(29)-P(1)-C(23)-C(24)	50.2(9)
Pt(1)-P(1)-C(23)-C(24)	-77.8(9)
C(17)-P(1)-C(23)-C(28)	-28.4(10)
C(29)-P(1)-C(23)-C(28)	-137.5(9)
Pt(1)-P(1)-C(23)-C(28)	94.5(9)
C(28)-C(23)-C(24)-C(25)	-0.8(16)
P(1)-C(23)-C(24)-C(25)	171.6(9)
C(23)-C(24)-C(25)-C(26)	0.8(17)
C(24)-C(25)-C(26)-C(27)	0(2)

C(25)-C(26)-C(27)-C(28)	-1(2)
C(26)-C(27)-C(28)-C(23)	1(2)
C(24)-C(23)-C(28)-C(27)	0.2(17)
P(1)-C(23)-C(28)-C(27)	-172.1(10)
C(17)-P(1)-C(29)-C(34)	-76.0(9)
C(23)-P(1)-C(29)-C(34)	30.3(9)
Pt(1)-P(1)-C(29)-C(34)	162.4(7)
C(17)-P(1)-C(29)-C(30)	103.3(8)
C(23)-P(1)-C(29)-C(30)	-150.5(7)
Pt(1)-P(1)-C(29)-C(30)	-18.4(8)
C(34)-C(29)-C(30)-C(31)	-0.6(14)
P(1)-C(29)-C(30)-C(31)	-179.9(7)
C(29)-C(30)-C(31)-C(32)	1.2(14)
C(30)-C(31)-C(32)-C(33)	-1.0(14)
C(30)-C(31)-C(32)-C(35)	-177.3(9)
C(31)-C(32)-C(33)-C(34)	0.3(14)
C(35)-C(32)-C(33)-C(34)	176.7(9)
C(30)-C(29)-C(34)-C(33)	-0.1(14)
P(1)-C(29)-C(34)-C(33)	179.2(7)
C(32)-C(33)-C(34)-C(29)	0.2(15)
C(33)-C(32)-C(35)-C(36)	165.0(10)
C(31)-C(32)-C(35)-C(36)	-18.9(15)
C(33)-C(32)-C(35)-Si(1)	-19.5(12)
C(31)-C(32)-C(35)-Si(1)	156.6(8)
C(39)-Si(1)-C(35)-C(36)	-108.5(8)
C(40)-Si(1)-C(35)-C(36)	125.6(7)
C(38)-Si(1)-C(35)-C(36)	6.1(7)
C(39)-Si(1)-C(35)-C(32)	75.3(9)
C(40)-Si(1)-C(35)-C(32)	-50.7(9)
C(38)-Si(1)-C(35)-C(32)	-170.1(8)
C(32)-C(35)-C(36)-C(37)	170.6(9)
Si(1)-C(35)-C(36)-C(37)	-5.5(11)
C(32)-C(35)-C(36)-C(41)	-7.6(17)
Si(1)-C(35)-C(36)-C(41)	176.3(10)
C(35)-C(36)-C(37)-C(38)	1.6(15)
C(41)-C(36)-C(37)-C(38)	179.9(11)

C(35)-C(36)-C(37)-C(47)	173.4(9)
C(41)-C(36)-C(37)-C(47)	-8.3(15)
C(35)-C(36)-C(37)-C(47')	-145.6(12)
C(41)-C(36)-C(37)-C(47')	32.7(18)
C(36)-C(37)-C(38)-C(53)	-180.0(9)
C(47)-C(37)-C(38)-C(53)	9.6(19)
C(47')-C(37)-C(38)-C(53)	-29.7(16)
C(36)-C(37)-C(38)-Si(1)	3.2(13)
C(47)-C(37)-C(38)-Si(1)	-167.2(10)
C(47')-C(37)-C(38)-Si(1)	153.5(10)
C(39)-Si(1)-C(38)-C(37)	110.4(9)
C(40)-Si(1)-C(38)-C(37)	-122.0(8)
C(35)-Si(1)-C(38)-C(37)	-5.2(8)
C(39)-Si(1)-C(38)-C(53)	-66.4(10)
C(40)-Si(1)-C(38)-C(53)	61.1(9)
C(35)-Si(1)-C(38)-C(53)	177.9(8)
C(35)-C(36)-C(41)-C(46)	113.2(14)
C(37)-C(36)-C(41)-C(46)	-64.9(15)
C(35)-C(36)-C(41)-C(42)	-62.9(16)
C(37)-C(36)-C(41)-C(42)	118.9(12)
C(46)-C(41)-C(42)-C(43)	-0.6(18)
C(36)-C(41)-C(42)-C(43)	175.5(10)
C(41)-C(42)-C(43)-C(44)	2.6(17)
C(42)-C(43)-C(44)-C(45)	-3.4(18)
C(43)-C(44)-C(45)-C(46)	2.1(18)
C(44)-C(45)-C(46)-C(41)	0.1(18)
C(42)-C(41)-C(46)-C(45)	-0.8(18)
C(36)-C(41)-C(46)-C(45)	-176.9(10)
C(38)-C(37)-C(47)-C(48)	107.3(13)
C(36)-C(37)-C(47)-C(48)	-63.6(12)
C(47')-C(37)-C(47)-C(48)	-176.3(17)
C(38)-C(37)-C(47)-C(52)	-75.8(14)
C(36)-C(37)-C(47)-C(52)	113.4(10)
C(47')-C(37)-C(47)-C(52)	0.6(13)
C(52)-C(47)-C(48)-C(49)	0.0
C(37)-C(47)-C(48)-C(49)	176.8(10)

0.0 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0
0.0
-177.1(9)
134.5(11)
-76.5(14)
10.5(11)
-49.0(16)
100.0(15)
-173(2)
0.0
176.7(14)
0.0
0.0
0.0
0.0
0.0 0.0
0.0 0.0 -176.3(16)
0.0 0.0 -176.3(16) 149.9(11)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9)
$\begin{array}{c} 0.0\\ 0.0\\ -176.3(16)\\ 149.9(11)\\ -33.9(13)\\ -29.6(16)\\ 146.6(8)\\ -4.1(14)\\ 175.4(9)\\ 0.8(15)\\ \end{array}$
$\begin{array}{c} 0.0\\ 0.0\\ -176.3(16)\\ 149.9(11)\\ -33.9(13)\\ -29.6(16)\\ 146.6(8)\\ -4.1(14)\\ 175.4(9)\\ 0.8(15)\\ 2.8(14) \end{array}$
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9) 0.8(15) 2.8(14) -176.2(7)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9) 0.8(15) 2.8(14) -176.2(7) -2.9(14)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9) 0.8(15) 2.8(14) -176.2(7) -2.9(14) 176.1(8)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9) 0.8(15) 2.8(14) -176.2(7) -2.9(14) 176.1(8) 4.0(14)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9) 0.8(15) 2.8(14) -176.2(7) -2.9(14) 176.1(8) 4.0(14) -175.6(9)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9) 0.8(15) 2.8(14) -176.2(7) -2.9(14) 176.1(8) 4.0(14) -175.6(9) -0.6(15)
0.0 0.0 -176.3(16) 149.9(11) -33.9(13) -29.6(16) 146.6(8) -4.1(14) 175.4(9) 0.8(15) 2.8(14) -176.2(7) -2.9(14) 176.1(8) 4.0(14) -175.6(9) -0.6(15) -53.1(12)

Pt(1)-P(2)-C(59)-C(64)	-179.2(9)
C(65)-P(2)-C(59)-C(60)	121.7(10)
C(56)#1-P(2)-C(59)-C(60)	-129.0(9)
Pt(1)-P(2)-C(59)-C(60)	-4.4(10)
C(64)-C(59)-C(60)-C(61)	1.1(17)
P(2)-C(59)-C(60)-C(61)	-174.1(9)
C(59)-C(60)-C(61)-C(62)	-1.8(19)
C(60)-C(61)-C(62)-C(63)	0(2)
C(61)-C(62)-C(63)-C(64)	3(2)
C(60)-C(59)-C(64)-C(63)	1.6(19)
P(2)-C(59)-C(64)-C(63)	176.4(11)
C(62)-C(63)-C(64)-C(59)	-4(2)
C(59)-P(2)-C(65)-C(70)	139.5(13)
C(56)#1-P(2)-C(65)-C(70)	26.1(14)
Pt(1)-P(2)-C(65)-C(70)	-94.2(13)
C(59)-P(2)-C(65)-C(66)	-44.0(13)
C(56)#1-P(2)-C(65)-C(66)	-157.5(12)
Pt(1)-P(2)-C(65)-C(66)	82.2(13)
C(70)-C(65)-C(66)-C(67)	-2(2)
P(2)-C(65)-C(66)-C(67)	-178.8(11)
C(65)-C(66)-C(67)-C(68)	2(2)
C(66)-C(67)-C(68)-C(69)	-1(2)
C(67)-C(68)-C(69)-C(70)	1(2)
C(66)-C(65)-C(70)-C(69)	2(2)
P(2)-C(65)-C(70)-C(69)	178.8(11)
C(68)-C(69)-C(70)-C(65)	-2(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+2