This journal is © The Royal Society of Chemistry 2010

Supplementary material

2-Pyridyl selenolates of antimony and bismuth: Synthesis, characterization, structures and their use as single source molecular precursor for the preparation of metal selenide nanostructures and thin films

Rakesh K. Sharma, G. Kedarnath*, Vimal K. Jain,* Amey Wadawale, Manoj Nalliath, C. G. S. Pillai and B. Vishwanadh

Figure Captions

- Fig. S1 a) XRD pattern and b) EDAX spectrum of Sb_2Se_3 obtained by pyrolysis of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at 400 °C for 1 h.
- **Fig. S2** a) XRD pattern and b) EDAX spectrum of BiSe obtained by pyrolysis of [Bi{Se-C₅H₃(Me-3)N}₃] at 450 °C for 1 h.
- Fig. S3 Absorption spectra of a) Sb₂Se₃ and b) Bi₂Se₃ nanoparticles obtained by the pyrolysis of [M{Se-C₅H₃(Me-3)N}₃] (M = Sb or Bi) in HDA at 200 and 230 °C, respectively for 25 min.
- Fig. S4 XRD patterns of Sb₂Se₃ obtained by AACVD of [Sb{Se-C₅H₃(Me-3)N}₃] at a) 425,c) 450, d) 475, f) 500 °C for a deposition time of 1 h and b) 425, e) 475 for a deposition time of 2h.
- Fig. S5 EDX spectra of Sb₂Se₃ films obtained by AACVD of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at a)425, b) 450 and c) 475 °C for 1 h.
- Fig. S6 EDX spectra of Sb₂Se₃ films obtained by AACVD of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at a) 425 and b) 475 °C for 2 h.
- **Fig. S7** SEM images of Sb₂Se₃ films obtained by AACVD of [Sb{Se-C₅H₃(Me-3)N}₃] at a) 425, b) 450, c) 475 and d) 500 °C for 1 h.
- Fig. S8 SEM images of Sb₂Se₃ films obtained by AACVD of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at a) 425 and b) 475 °C for 2 h.
- Fig. S9 XRD patterns of bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N_3}]$ at a) 350, b) 375, c) 400, d) 425 and e) 475 °C for 1 h.

This journal is © The Royal Society of Chemistry 2010

- Fig. S10 XRD patterns of bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N}_3]$ at a) 375, b) 400 and c) 425 °C for 2 h.
- Fig. S11 EDX spectra of bismuth selenide films obtained by AACVD of $[Bi{SeC_5H_3(Me-3)N}_3]$ at a) 350, b) 375, c) 400, d) 425 and e) 475 °C for 1 h.
- Fig. S12 SEM images of bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N_3}]$ at a) 350, b) 375, c) 400, d) 425 and e) 475 °C for 1 h.
- **Fig. S13** a) SEM images of uniformly coated bismuth selenide films obtained by AACVD of [Bi{Se-C₅H₃(Me-3)N}₃] at 375 and b) 400 °C, respectively for 1 h.

Fig. S14 Packing diagram of [Sb{Se-C₅H₃(Me-3)N}₃].1.5H₂O (2).1.5H₂O.

Fig. S15 Packing diagram of $[Bi{Se-C_5H_3(Me-3)N}_3]$.0.5H₂O (4).0.5H₂O.

Table S1. Experimental data of antimony selenide thin films.

Table S2. Experimental data of bismuth selenide thin films.

CIF for $[Sb{Se-C_5H_3(Me-3)N}_3]$.1.5H₂O

CIF for $[Bi{Se-C_5H_3(Me-3)N}_3].0.5H_2O$

Fig. S1 a) XRD pattern and b) EDAX spectrum of Sb_2Se_3 obtained by pyrolysis of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at 400 °C for 1 h.

Fig. S2 a) XRD pattern and b) EDAX spectrum of BiSe obtained by pyrolysis of $[Bi{Se-C_5H_3(Me-3)N}_3]$ at 450 °C for 1 h.

Fig. S5 EDAX spectra of Sb₂Se₃ films obtained by AACVD of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at a) 425, b) 450 and c) 475 °C for 1 h.

Fig. S6 EDAX spectra of Sb_2Se_3 films obtained by AACVD of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at a) 425 and b) 475 °C for 2 h.

Fig. S7 SEM images of Sb₂Se₃ films obtained by AACVD of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at a) 425, b) 450, c) 475 and d) 500 °C for 1 h.

This journal is © The Royal Society of Chemistry 2010

Fig. S8 SEM images of Sb₂Se₃ films obtained by AACVD of $[Sb{Se-C_5H_3(Me-3)N}_3]$ at a) 425 and b) 475 °C for 2 h.

Fig. S9 XRD patterns of bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N_3}]$ at a) 350, b) 375, c) 400, d) 425 and e) 475 °C for 1 h.

Fig. S10 XRD patterns of bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N_3}]$ at a) 375, b) 400 and c) 425 °C for 2 h.

Fig. S11 EDAX spectra of bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N}_3]$ at a) 350, b) 375, c) 400, d) 425 and e) 475 °C for 1 h.

Fig. S12 SEM images of bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N}_3]$ at a) 350, b) 375, c) 400, d) 425 and e) 475 °C for 1 h.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Fig. 13 a) SEM images of uniformly coated bismuth selenide films obtained by AACVD of $[Bi{Se-C_5H_3(Me-3)N}_3]$ at 375 and b) 400 °C, respectively for 1 h.

Fig. S14 Packing diagram of [Sb{Se-C₅H₃(Me-3)N}₃].1.5H₂O (**2**).1.5H₂O.

Fig. S15 Packing diagram of [Bi{Se-C₅H₃(Me-3)N}₃].0.5H₂O (4).0.5H₂O.

This journal is © The Royal Society of Chemistry 2010

Discussion of crystal packing

The water molecules are trapped almost halfway between the planar pyridine rings attached to Se1 of different molecules in the cell. On careful examination of the packing diagrams, it is observed that O1 atom in **2** lies at distances of 3.930 Å and 3.942 Å on the axis joining centers of two parallel pyridine rings attached to Se1 of neighboring molecules. O2 is situated at a distance of 3.559 from C6 of neighboring molecule due to which the methyl group on C6 seems to be slightly disordered. Similarly, water molecule in **4** is also highly disordered; hence the packing diagram shows two sites with 0.5 occupancy. Each of O1 atoms with 0.5 occupancy lies at a distance of 3.824 Å, which is approximately half the inter-planar distance (7.832 Å) of the two pyridine rings attached to Se1 of neighboring parent molecules in the cell. Thus the high disorders in the water molecules in **2** and **4** may be attributed to the interactions between the delocalized π orbitals of the pyridine rings and the water molecules.

Substrate temperature (°C)	Deposition	XRD Orientation of film and	EDX
	time (hours)	phase	Se/Sb
			Atom ratio
425	1	(211) orthorhombic	1.52
425	2	(211) orthorhombic	1.48
450	1	(211) orthorhombic	1.3
475	1	(211) orthorhombic	1.45
475	2	(211) orthorhombic	1.34
500	1	(211) orthorhombic	

Table S1. Experimental data of antimony selenide thin films.

Substrate temperature (°C)	Deposition time (hours)	XRD Orientation of film and phase	EDX Se/Bi Atom ratio
350	1	(009) rhombohedral Bi ₃ Se ₄	1.2
375	1	(104) hexagonal BiSe	0.96
375	2	(104) hexagonal BiSe	1.00
400	1	(104) hexagonal BiSe	0.89
400	2	(104) rhombohedral Bi ₄ Se ₃	0.81
425	1	(104) hexagonal BiSe	1.08
425	2	(104) rhombohedral Bi ₄ Se ₃	0.87
475	1	(1011) hexagonal Bi ₃ Se ₂	0.63

Table S2. Experimental data of bismuth selenide thin films.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

This journal is © The Royal Society of Chemistry 2010

Crystal Information File of [Sb{Se-C₅H₃(Me-3)N}₃] .1.5H₂O

```
data[Sb{Se-C5H3(Me-3)N}]
_audit_creation_method
                                SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common
                                ?
                                ?
_chemical_melting_point
                                ?
_chemical_formula_moiety
_chemical_formula_sum
 'C18 H18 N3 O1.50 Sb Se3'
chemical formula weight
                                658.98
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
 'C' 'C' 0.0033 0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H' 0.0000 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'N' 'N' 0.0061 0.0033
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Se' 'Se' -0.0929 2.2259
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Sb' 'Sb' -0.5866 1.5461
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 '0' '0' 0.0106 0.0060
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                     monoclinic
_symmetry_space_group_name_H-M
                                     'P 1 21/c 1'
_symmetry_space_group_name_Hall
                                    '-P 2ybc'
_symmetry_Int_Tables_number
                                     14
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, y+1/2, -z+1/2'
 '-x, -y, -z'
 'x, -y-1/2, z-1/2'
_cell_length_a
                                 14.853(3)
_cell_length_b
                                 11.604(2)
_cell_length_c
                                 14.490(2)
_cell_angle_alpha
                                 90.00
```

This journal is © The Royal Society of Chemistry 2010

113.709(13) _cell_angle_beta _cell_angle_gamma 90.00 _cell_volume 2286.6(7)_cell_formula_units_Z 4 _cell_measurement_temperature 298(2) _cell_measurement_reflns_used 25 _cell_measurement_theta_min 10.1 _cell_measurement_theta_max 13.1 'plate' _exptl_crystal_description 'yellow' _exptl_crystal_colour 0.20 _exptl_crystal_size_max exptl crystal size mid 0.20 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.914 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1248 5.996 _exptl_absorpt_coefficient_mu _exptl_absorpt_correction_type psi-scan _exptl_absorpt_process_details '(North, Phillips & Mathews, 1968)' _exptl_absorpt_correction_T_min 0.3801 _exptl_absorpt_correction_T_max 0.5854 _exptl_special_details ; ? ; diffrn_ambient_temperature 298(2)_diffrn_radiation_wavelength 0.71069 _diffrn_radiation_type MoK∖a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite 'Rigaku AFC7S' _diffrn_measurement_device_type _diffrn_measurement_method w-2_diffrn_detector_area_resol_mean ? _diffrn_standards_number 3 _diffrn_standards_interval_count 150 _diffrn_standards_decay_% -10.98 _diffrn_reflns_number 5978 _diffrn_reflns_av_R_equivalents 0.0375 0.1115 _diffrn_reflns_av_sigmaI/netI _diffrn_reflns_limit_h_min -17 diffrn reflns limit h max 19 diffrn reflns limit k min 0 diffrn reflns limit k max 15 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 10 _diffrn_reflns_theta_min 2.82 _diffrn_reflns_theta_max 27.50 _reflns_number_total 5081

This journal is © The Royal Society of Chemistry 2010

_reflns_number_gt 2637 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'WinAFC' _computing_cell_refinement 'WinAFC' _computing_data_reduction 'CrystalStructure' _computing_structure_solution 'SIR-92' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Ortep 3 for windows' 'WinGX 1.70.01' _computing_publication_material _refine_special_details ; Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc $w=1/[s^2(Fo^2)+(0.0699P)^2+0.0000P]$ where $P=(Fo^2+2Fc^2)/3'$ _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens qeom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0010(3)_refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_number_reflns 5081 _refine_ls_number_parameters 233 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1426 _refine_ls_R_factor_gt 0.0511 _refine_ls_wR_factor_ref 0.1569 _refine_ls_wR_factor_gt 0.1234 refine ls goodness of fit ref 0.984 _refine_ls_restrained_S_all 0.984 _refine_ls_shift/su_max 0.000 0.000 _refine_ls_shift/su_mean loop_ _atom_site_label _atom_site_type_symbol

This journal is © The Royal Society of Chemistry 2010

_atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly atom site disorder group Sb1 Sb 0.34519(4) 0.03315(5) 0.39482(4) 0.04232(19) Uani 1 1 d . . . Se3 Se 0.34296(8) -0.19176(7) 0.42414(7) 0.0529(3) Uani 1 1 d . . . Se2 Se 0.41079(7) 0.03910(7) 0.59506(7) 0.0500(3) Uani 1 1 d . . . Sel Se 0.16502(8) 0.05782(9) 0.37372(9) 0.0618(3) Uani 1 1 d . . . N2 N 0.3717(6) 0.2402(6) 0.4879(6) 0.0506(18) Uani 1 1 d . . C8 C 0.4434(6) 0.2768(7) 0.6659(7) 0.047(2) Uani 1 1 d . . N3 N 0.2758(6) -0.0983(6) 0.2345(5) 0.0483(18) Uani 1 1 d . . N1 N 0.2095(6) 0.1868(7) 0.2379(6) 0.057(2) Uani 1 1 d . . . C18 C 0.2891(9) -0.4190(7) 0.2818(9) 0.064(3) Uani 1 1 d . . H18A H 0.2739 -0.4808 0.2338 0.096 Uiso 1 1 calc R . . H18B H 0.2484 -0.4250 0.3189 0.096 Uiso 1 1 calc R . . H18C H 0.3570 -0.4238 0.3275 0.096 Uiso 1 1 calc R . . C9 C 0.4348(7) 0.3926(8) 0.6444(8) 0.058(2) Uani 1 1 d . . . H9 H 0.4537 0.4451 0.6974 0.069 Uiso 1 1 calc R . . C10 C 0.4000(9) 0.4331(8) 0.5489(9) 0.068(3) Uani 1 1 d . . . H10 H 0.3971 0.5119 0.5364 0.081 Uiso 1 1 calc R . . C14 C 0.2707(7) -0.3067(8) 0.2278(8) 0.051(2) Uani 1 1 d . . . C7 C 0.4094(6) 0.2027(7) 0.5829(6) 0.0442(19) Uani 1 1 d . . . C13 C 0.2923(7) -0.2025(7) 0.2820(7) 0.049(2) Uani 1 1 d . . . C1 C 0.1385(7) 0.1710(8) 0.2699(8) 0.053(2) Uani 1 1 d . . . C17 C 0.2401(7) -0.0938(9) 0.1349(9) 0.062(3) Uani 1 1 d . . . H17 H 0.2286 -0.0227 0.1027 0.074 Uiso 1 1 calc R . C12 C 0.4830(8) 0.2326(9) 0.7731(8) 0.062(3) Uani 1 1 d . . H12A H 0.5489 0.2051 0.7918 0.094 Uiso 1 1 calc R . . H12B H 0.4422 0.1708 0.7781 0.094 Uiso 1 1 calc R . H12C H 0.4830 0.2939 0.8176 0.094 Uiso 1 1 calc R . . C5 C 0.1931(9) 0.2639(10) 0.1650(10) 0.079(3) Uani 1 1 d . . . H5 H 0.2426 0.2758 0.1421 0.094 Uiso 1 1 calc R . . C4 C 0.1086(9) 0.3270(10) 0.1212(9) 0.075(3) Uani 1 1 d . . . H4 H 0.1014 0.3792 0.0700 0.089 Uiso 1 1 calc R . . C11 C 0.3689(8) 0.3553(8) 0.4704(8) 0.058(2) Uani 1 1 d . . . H11 H 0.3456 0.3820 0.4044 0.070 Uiso 1 1 calc R . . C2 C 0.0481(8) 0.2269(10) 0.2284(10) 0.076(3) Uani 1 1 d . . . C16 C 0.2203(8) -0.1907(10) 0.0801(9) 0.070(3) Uani 1 1 d . . . H16 H 0.1967 -0.1860 0.0102 0.084 Uiso 1 1 calc R . . C15 C 0.2344(8) -0.2979(9) 0.1261(8) 0.065(3) Uani 1 1 d . . . H15 H 0.2189 -0.3643 0.0868 0.079 Uiso 1 1 calc R . . C3 C 0.0362(10) 0.3122(12) 0.1537(12) 0.096(4) Uani 1 1 d . . . H3' H -0.0206 0.3568 0.1278 0.115 Uiso 1 1 calc R . . 01 0 0.0000 0.0000 0.0000 0.093 Uani 1 2 d S . . 02 0 0.1054(6) 0.0618(7) -0.0906(7) 0.093 Uani 1 1 d . . . C6 C -0.0321(12) 0.1999(16) 0.2675(16) 0.147(8) Uani 1 1 d . . .

This journal is © The Royal Society of Chemistry 2010

H6A H -0.0348 0.1183 0.2769 0.221 Uiso 1 1 calc R . . H6B H -0.0947 0.2262 0.2194 0.221 Uiso 1 1 calc R . H6C H -0.0168 0.2385 0.3307 0.221 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sb1 0.0437(3) 0.0373(3) 0.0473(3) 0.0020(2) 0.0197(3) -0.0002(2) Se3 0.0702(7) 0.0385(5) 0.0537(5) 0.0031(4) 0.0289(5) -0.0021(4) Se2 0.0593(6) 0.0394(4) 0.0479(5) 0.0047(4) 0.0180(4) -0.0004(4) Sel 0.0476(6) 0.0715(7) 0.0725(7) 0.0112(5) 0.0306(5) 0.0002(5) N2 0.065(5) 0.043(4) 0.042(4) 0.004(3) 0.019(4) 0.009(4) C8 0.041(5) 0.045(5) 0.051(5) 0.001(4) 0.016(4) 0.001(4) N3 0.056(5) 0.050(4) 0.037(4) 0.007(3) 0.016(4) 0.000(3)N1 0.052(5) 0.066(5) 0.058(5) 0.010(4) 0.026(4) 0.002(4) $C18 \ 0.078(8) \ 0.036(4) \ 0.081(8) \ -0.002(5) \ 0.035(6) \ 0.005(5)$ $C9 \ 0.051(6) \ 0.052(5) \ 0.064(7) \ -0.019(5) \ 0.016(5) \ 0.001(4)$ $\texttt{C10} \ \texttt{0.090(9)} \ \texttt{0.036(5)} \ \texttt{0.084(8)} \ -\texttt{0.002(5)} \ \texttt{0.041(7)} \ \texttt{0.003(5)}$ C14 0.045(5) 0.046(5) 0.072(7) -0.008(4) 0.033(5) -0.003(4)C7 0.041(5) 0.053(5) 0.044(5) 0.006(4) 0.023(4) 0.004(4) $C13 \ 0.041(5) \ 0.049(5) \ 0.057(6) \ -0.006(4) \ 0.022(4) \ -0.005(4)$ $C1 \ 0.037(5) \ 0.055(5) \ 0.064(6) \ -0.005(5) \ 0.017(4) \ -0.003(4)$ C17 0.054(6) 0.059(6) 0.076(8) 0.016(5) 0.030(6) 0.019(5) C12 0.057(6) 0.069(6) 0.055(6) -0.005(5) 0.016(5) -0.005(5) C5 0.073(8) 0.082(8) 0.095(9) 0.009(7) 0.049(7) -0.003(7) $C4 \ 0.071(8) \ 0.072(7) \ 0.082(8) \ 0.027(6) \ 0.033(7) \ 0.024(6)$ C11 0.069(7) 0.044(5) 0.065(6) 0.010(4) 0.030(5) 0.011(4) $C2 \ 0.051(7) \ 0.083(8) \ 0.102(10) \ 0.025(7) \ 0.038(6) \ 0.018(6)$ C16 0.063(7) 0.085(8) 0.060(6) 0.007(6) 0.022(5) 0.016(6) $C15 \ 0.072(7) \ 0.067(7) \ 0.058(6) \ -0.011(5) \ 0.027(6) \ 0.006(5)$ C3 0.070(9) 0.099(9) 0.120(12) 0.015(9) 0.039(8) 0.036(7) 01 0.060 0.087 0.117 0.030 0.019 0.038 02 0.060 0.087 0.117 0.030 0.019 0.038 $C6 \quad 0.078(10) \quad 0.174(16) \quad 0.23(2) \quad 0.068(15) \quad 0.102(14) \quad 0.044(10)$ _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles

used when they are defined by crystal symmetry. An approximate
(isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;

and torsion angles; correlations between esds in cell parameters are only

loop_

_geom_bond_atom_site_label_1

This journal is © The Royal Society of Chemistry 2010

_geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sb1 Se1 2.5843(13) . ? Sb1 Se3 2.6466(11) . ? Sb1 Se2 2.6643(12) . ? Se3 C13 1.891(9) . ? Se2 C7 1.906(9) . ? Sel Cl 1.915(10) . ? N2 C7 1.333(11) . ? N2 C11 1.357(12) . ? C8 C9 1.374(12) . ? C8 C7 1.397(12) . ? C8 C12 1.512(13) . ? N3 C17 1.323(13) . ? N3 C13 1.363(11) . ? N1 C1 1.323(12) . ? N1 C5 1.330(14) . ? C18 C14 1.488(13) . ? C18 H18A 0.9600 . ? C18 H18B 0.9600 . ? C18 H18C 0.9600 . ? C9 C10 1.351(15) . ? С9 Н9 0.9300 . ? C10 C11 1.379(14) . ? C10 H10 0.9300 . ? C14 C15 1.355(14) . ? C14 C13 1.407(12) . ? C1 C2 1.391(14) . ? C17 C16 1.339(15) . ? C17 H17 0.9300 . ? C12 H12A 0.9600 . ? C12 H12B 0.9600 . ? C12 H12C 0.9600 . ? C5 C4 1.368(15) . ? C5 H5 0.9300 . ? C4 C3 1.348(17) . ? C4 H4 0.9300 . ? C11 H11 0.9300 . ? C2 C3 1.425(17) . ? C2 C6 1.544(17) . ? C16 C15 1.387(15) . ? C16 H16 0.9300 . ? C15 H15 0.9300 . ? C3 H3' 0.9300 . ? C6 H6A 0.9600 . ? C6 H6B 0.9600 . ? C6 H6C 0.9600 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2

This journal is © The Royal Society of Chemistry 2010

_geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Sel Sbl Se3 92.81(4) . . ? Sel Sbl Se2 91.94(4) . . ? Se3 Sb1 Se2 82.73(3) . . ? C13 Se3 Sb1 85.1(3) . . ? C7 Se2 Sb1 86.5(3) . . ? C1 Sel Sb1 92.6(3) . . ? C7 N2 C11 118.9(8) . . ? C9 C8 C7 116.0(8) . . ? C9 C8 C12 121.8(9) . . ? C7 C8 C12 122.2(8) . . ? C17 N3 C13 119.9(8) . . ? C1 N1 C5 117.0(9) . . ? C14 C18 H18A 109.5 . . ? C14 C18 H18B 109.5 . . ? H18A C18 H18B 109.5 . . ? C14 C18 H18C 109.5 . . ? H18A C18 H18C 109.5 . . ? H18B C18 H18C 109.5 . . ? C10 C9 C8 122.4(9) . . ? С10 С9 Н9 118.8 . . ? C8 C9 H9 118.8 . . ? C9 C10 C11 118.7(9) . . ? C9 C10 H10 120.7 . . ? C11 C10 H10 120.7 . . ? C15 C14 C13 116.4(9) . . ? C15 C14 C18 123.1(9) . . ? C13 C14 C18 120.5(9) . . ? N2 C7 C8 123.0(8) . . ? N2 C7 Se2 113.9(6) . . ? C8 C7 Se2 123.2(6) . . ? N3 C13 C14 121.7(9) . . ? N3 C13 Se3 113.8(6) . . ? C14 C13 Se3 124.5(7) . . ? N1 C1 C2 123.4(10) . . ? N1 C1 Sel 115.4(7) . . ? C2 C1 Sel 121.1(7) . . ? N3 C17 C16 120.6(10) . . ? N3 C17 H17 119.7 . . ? C16 C17 H17 119.7 . . ? C8 C12 H12A 109.5 . . ? C8 C12 H12B 109.5 . . ? H12A C12 H12B 109.5 . . ? C8 C12 H12C 109.5 . . ? H12A C12 H12C 109.5 . . ? H12B C12 H12C 109.5 . . ? N1 C5 C4 124.7(10) . . ? N1 C5 H5 117.7 . . ? C4 C5 H5 117.7 . . ?

This journal is © The Royal Society of Chemistry 2010

C3 C4 C5 118.8(11) . . ? C3 C4 H4 120.6 . . ? C5 C4 H4 120.6 . . ? N2 C11 C10 121.0(9) . . ? N2 C11 H11 119.5 . . ? C10 C11 H11 119.5 . . ? C1 C2 C3 117.1(10) . . ? C1 C2 C6 120.1(11) . . ? C3 C2 C6 122.8(11) . . ? C17 C16 C15 120.9(11) . . ? C17 C16 H16 119.5 . . ? C15 C16 H16 119.5 . . ? C14 C15 C16 120.5(10) . . ? C14 C15 H15 119.8 . . ? C16 C15 H15 119.8 . . ? C4 C3 C2 118.8(11) . . ? C4 C3 H3' 120.6 . . ? C2 C3 H3' 120.6 . . ? C2 C6 H6A 109.5 . . ? C2 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? C2 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? _diffrn_measured_fraction_theta_max 0.967 27.50 _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full 0.967 _refine_diff_density_max 1.448 refine diff density min -1.344 _refine_diff_density_rms 0.150

This journal is © The Royal Society of Chemistry 2010

Crystal Information File of [Bi{Se-C₅H₃(Me-3)N}₃].0.5H₂O

 $data_[Bi{Se-C5H3(Me-3)N}3]$ _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? ? _chemical_melting_point ? _chemical_formula_moiety _chemical_formula_sum 'C18 H18 Bi N3 O0.50 Se3' 730.21 chemical formula weight loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Se' 'Se' -0.0929 2.2259 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Bi' 'Bi' -4.1077 10.2566 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 1 21/c 1' _symmetry_space_group_name_Hall '-P 2ybc' _symmetry_Int_Tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 14.852(3)_cell_length_b 11.6058(17)_cell_length_c 14.590(3)_cell_angle_alpha 90.00

```
113.745(16)
_cell_angle_beta
_cell_angle_gamma
                                   90.00
_cell_volume
                                   2302.0(8)
_cell_formula_units_Z
                                   4
_cell_measurement_temperature
                                   298(2)
_cell_measurement_reflns_used
                                        25
_cell_measurement_theta_min
                                        10.1
_cell_measurement_theta_max
                                        14.5
_exptl_crystal_description
                                       'block'
                                       'yellow'
_exptl_crystal_colour
_exptl_crystal_size_max
                                   0.25
exptl crystal size mid
                                   0.15
_exptl_crystal_size_min
                                   0.07
_exptl_crystal_density_meas
                                   ?
_exptl_crystal_density_diffrn
                                   2.107
_exptl_crystal_density_method
                                   'not measured'
_exptl_crystal_F_000
                                   1344
_exptl_absorpt_coefficient_mu
                                   12.411
_exptl_absorpt_correction_T_min
                                   0.1474
_exptl_absorpt_correction_T_max
                                   0.4770
_exptl_absorpt_correction_type
                                        psi-scan
                                        '(North, Phillips & Mathews, 1968)'
_exptl_absorpt_process_details
_exptl_special_details
;
 ?
;
diffrn ambient temperature
                                   298(2)
diffrn_radiation_wavelength
                                   0.71073
                                   MoK∖a
_diffrn_radiation_type
_diffrn_radiation_source
                                   'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                   graphite
_diffrn_measurement_device_type
                                       'Rigaku AFC7S'
_diffrn_measurement_method
                                        \w-2\q
_diffrn_detector_area_resol_mean
                                   ?
_diffrn_standards_number
                                        3
_diffrn_standards_interval_count
                                        150
_diffrn_standards_decay_%
                                        -2.69
_diffrn_reflns_number
                                   6319
_diffrn_reflns_av_R_equivalents
                                   0.0519
_diffrn_reflns_av_sigmaI/netI
                                   0.2044
_diffrn_reflns_limit_h_min
                                   -17
_diffrn_reflns_limit_h_max
                                   19
diffrn reflns limit k min
                                   0
diffrn reflns limit k max
                                   15
diffrn reflns limit 1 min
                                   -18
_diffrn_reflns_limit_l_max
                                   10
_diffrn_reflns_theta_min
                                   2.81
_diffrn_reflns_theta_max
                                   27.54
_reflns_number_total
                                   5279
_reflns_number_gt
                                   2198
```

This journal is © The Royal Society of Chemistry 2010

_reflns_threshold_expression >2sigma(I) _computing_data_collection 'WinAFC' _computing_cell_refinement 'WinAFC' _computing_data_reduction 'CrystalStructure' _computing_structure_solution 'SIR92' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Ortep-3 for windows' WinGX-1.70.01' _computing_publication_material _refine_special_details ; Refinement of F^2[^] against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2^ > 2sigma(F^2^)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0711P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' atom sites solution primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef 2 5279 _refine_ls_number_reflns _refine_ls_number_parameters 230 _refine_ls_number_restraints _refine_ls_R_factor_all 0.1937 _refine_ls_R_factor_gt 0.0587 _refine_ls_wR_factor_ref 0.1616 _refine_ls_wR_factor_gt 0.1360 _refine_ls_goodness_of_fit_ref 0.832 _refine_ls_restrained_S_all 0.832 _refine_ls_shift/su_max 0.000 refine ls shift/su mean 0.000 loop _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z

This journal is © The Royal Society of Chemistry 2010

_atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Bil Bi 0.15535(4) 0.47255(5) 0.10897(4) 0.04015(18) Uani 1 1 d . . . Se3 Se 0.08047(12) 0.46504(13) -0.09930(11) 0.0459(4) Uani 1 1 d . . . Se2 Se 0.15846(13) 0.70560(13) 0.07935(12) 0.0508(4) Uani 1 1 d . . . Sel Se 0.34021(14) 0.44538(16) 0.12352(14) 0.0624(5) Uani 1 1 d . . . N3 N 0.1253(10) 0.2682(11) 0.0098(10) 0.053(3) Uani 1 1 d . . . N2 N 0.2224(10) 0.6078(10) 0.2650(9) 0.051(4) Uani 1 1 d . . . N1 N 0.2908(11) 0.3207(11) 0.2578(11) 0.057(4) Uani 1 1 d . . . C8 C 0.2320(13) 0.8168(12) 0.2751(13) 0.055(4) Uani 1 1 d . . . C6 C 0.5349(17) 0.295(2) 0.2351(18) 0.129(4) Uani 1 1 d . . . H6A H 0.5210 0.2522 0.1745 0.194 Uiso 1 1 calc R . . H6B H 0.5961 0.2686 0.2857 0.194 Uiso 1 1 calc R . H6C H 0.5396 0.3752 0.2228 0.194 Uiso 1 1 calc R . . C15 C 0.0656(12) 0.1089(14) -0.1428(12) 0.055(4) Uani 1 1 d . . . H15 H 0.0464 0.0555 -0.1947 0.066 Uiso 1 1 calc R . . C16 C 0.1039(14) 0.0714(15) -0.0431(14) 0.066(5) Uani 1 1 d . . . H16 H 0.1112 -0.0069 -0.0283 0.079 Uiso 1 1 calc R . . C17 C 0.1302(14) 0.1504(15) 0.0315(12) 0.063(5) Uani 1 1 d . . . H17 H 0.1518 0.1261 0.0976 0.075 Uiso 1 1 calc R . . C14 C 0.0563(10) 0.2267(14) -0.1640(12) 0.045(4) Uani 1 1 d . . . C11 C 0.2608(12) 0.6023(15) 0.3679(13) 0.058(5) Uani 1 1 d . . . H11 H 0.2692 0.5303 0.3982 0.069 Uiso 1 1 calc R . C5 C 0.3038(16) 0.2497(17) 0.3322(16) 0.077(6) Uani 1 1 d . . . H5 H 0.2557 0.2455 0.3577 0.092 Uiso 1 1 calc R . C1 C 0.3627(11) 0.3339(13) 0.2265(12) 0.047(4) Uani 1 1 d . . . C2 C 0.4524(14) 0.2755(19) 0.2707(15) 0.082(6) Uani 1 1 d . C18 C 0.0143(14) 0.2684(13) -0.2735(12) 0.063(5) Uani 1 1 d . . H18A H -0.0399 0.3197 -0.2847 0.094 Uiso 1 1 calc R . . H18B H -0.0081 0.2034 -0.3176 0.094 Uiso 1 1 calc R . . H18C H 0.0645 0.3083 -0.2865 0.094 Uiso 1 1 calc R . C12 C 0.2115(16) 0.9298(13) 0.2197(14) 0.077(6) Uani 1 1 d . . . H12A H 0.2456 0.9906 0.2650 0.115 Uiso 1 1 calc R . . H12B H 0.1421 0.9449 0.1922 0.115 Uiso 1 1 calc R . . H12C H 0.2338 0.9260 0.1664 0.115 Uiso 1 1 calc R . . C7 C 0.2100(12) 0.7110(12) 0.2230(11) 0.044(4) Uani 1 1 d . . . C3 C 0.4599(18) 0.1891(16) 0.3476(17) 0.096(7) Uani 1 1 d . . . H3 H 0.5154 0.1427 0.3754 0.115 Uiso 1 1 calc R . . C10 C 0.2877(15) 0.6997(16) 0.4286(13) 0.067(5) Uani 1 1 d . . . H10 H 0.3160 0.6943 0.4981 0.080 Uiso 1 1 calc R . . C13 C 0.0854(10) 0.3029(11) -0.0862(10) 0.033(3) Uani 1 1 d . . . C9 C 0.2696(13) 0.8069(17) 0.3790(13) 0.064(5) Uani 1 1 d . . . H9 H 0.2834 0.8738 0.4172 0.077 Uiso 1 1 calc R . . C4 C 0.3890(16) 0.1789(17) 0.3754(15) 0.076(6) Uani 1 1 d . . . H4 H 0.3930 0.1250 0.4240 0.091 Uiso 1 1 calc R . . O1 O 0.504(3) 0.508(3) 0.480(3) 0.093 Uani 0.50 1 d P . .

This journal is © The Royal Society of Chemistry 2010

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Bil 0.0426(3) 0.0355(3) 0.0434(3) -0.0003(3) 0.0184(3) 0.0003(3) Se3 0.0557(10) 0.0368(8) 0.0435(8) 0.0046(7) 0.0181(8) -0.0007(8) Se2 0.0667(12) 0.0379(8) 0.0513(10) 0.0040(7) 0.0272(9) -0.0022(8) Sel 0.0509(11) 0.0713(13) 0.0737(12) 0.0137(9) 0.0341(10) 0.0013(9) N3 0.045(9) 0.049(8) 0.063(9) -0.016(7) 0.019(7) -0.003(7) $N2 \ 0.073(11) \ 0.041(8) \ 0.045(8) \ 0.001(6) \ 0.032(8) \ -0.013(7)$ N1 0.065(11) 0.050(8) 0.069(10) 0.008(7) 0.039(9) 0.007(7) C8 0.061(12) 0.026(8) 0.083(13) 0.003(8) 0.033(11) 0.001(7) C6 0.071(17) 0.183 0.160 0.060(18) 0.074(14) 0.043(16) $\texttt{C15} \ \texttt{0.055(12)} \ \texttt{0.052(11)} \ \texttt{0.056(11)} \ \texttt{-0.022(9)} \ \texttt{0.019(9)} \ \texttt{-0.015(9)}$ C16 0.081(15) 0.043(10) 0.071(13) 0.002(9) 0.029(11) 0.014(9) $C17 \ 0.087(15) \ 0.061(12) \ 0.045(10) \ 0.017(9) \ 0.032(11) \ 0.026(10)$ $C14 \ 0.023(8) \ 0.062(11) \ 0.061(10) \ -0.010(8) \ 0.028(8) \ -0.011(7)$ $\texttt{C11} \quad \texttt{0.043(11)} \quad \texttt{0.065(12)} \quad \texttt{0.069(13)} \quad \texttt{0.015(9)} \quad \texttt{0.026(10)} \quad \texttt{0.012(9)}$ $\texttt{C5} \ \texttt{0.076(16)} \ \texttt{0.084(14)} \ \texttt{0.088(15)} \ -\texttt{0.014(12)} \ \texttt{0.051(14)} \ \texttt{0.006(12)}$ C1 0.021(9) 0.055(9) 0.062(10) 0.001(8) 0.012(8) 0.004(7) $\texttt{C2} \ \texttt{0.043(13)} \ \texttt{0.120(18)} \ \texttt{0.080(14)} \ \texttt{-0.014(13)} \ \texttt{0.022(11)} \ \texttt{0.014(12)}$ $C18 \ 0.094(16) \ 0.045(10) \ 0.063(11) \ -0.009(8) \ 0.046(11) \ -0.001(10)$ $C12 \ 0.123(19) \ 0.036(9) \ 0.106(16) \ -0.008(9) \ 0.083(15) \ 0.005(10)$ $C7 \ 0.044(10) \ 0.037(8) \ 0.063(10) \ 0.001(7) \ 0.033(9) \ -0.005(7)$ C3 0.10(2) 0.056(13) 0.119(19) 0.042(12) 0.030(16) 0.030(13) $C10 \ 0.081(15) \ 0.065(13) \ 0.052(11) \ -0.019(10) \ 0.024(11) \ -0.002(10)$ C13 0.020(8) 0.035(8) 0.045(9) 0.001(7) 0.015(7) 0.000(6) C9 0.061(13) 0.078(14) 0.060(12) -0.031(10) 0.031(11) -0.006(10) $C4 \quad 0.069(15) \quad 0.078(14) \quad 0.085(15) \quad -0.011(11) \quad 0.035(13) \quad -0.032(13)$ 01 0.050 0.088 0.129 0.006 0.022 0.020 _geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Bi1 N2 2.610(12) . ?

This journal is © The Royal Society of Chemistry 2010

Bil Sel 2.686(2) . ? Bil N3 2.720(12) . ? Bil Se2 2.7424(16) . ? Bil Se3 2.7851(17) . ? Se3 C13 1.889(13) . ? Se2 C7 1.921(15) . ? Sel Cl 1.907(16) . ? N3 C13 1.345(17) . ? N3 C17 1.40(2) . ? N2 C7 1.324(17) . ? N2 C11 1.376(18) . ? N1 C5 1.31(2) . ? N1 C1 1.329(18) . ? C8 C9 1.39(2) . ? C8 C7 1.41(2) . ? C8 C12 1.51(2) . ? C6 C2 1.53(3) . ? C6 H6A 0.9600 . ? C6 H6B 0.9600 . ? C6 H6C 0.9600 . ? C15 C16 1.40(2) . ? C15 C14 1.40(2) . ? C15 H15 0.9300 . ? C16 C17 1.35(2) . ? C16 H16 0.9300 . ? C17 H17 0.9300 . ? C14 C13 1.365(19) . ? C14 C18 1.54(2) . ? C11 C10 1.39(2) . ? C11 H11 0.9300 . ? C5 C4 1.43(3) . ? C5 H5 0.9300 . ? C1 C2 1.40(2) . ? C2 C3 1.48(3) . ? C18 H18A 0.9600 . ? C18 H18B 0.9600 . ? C18 H18C 0.9600 . ? C12 H12A 0.9600 . ? C12 H12B 0.9600 . ? C12 H12C 0.9600 . ? C3 C4 1.28(3) . ? СЗ НЗ 0.9300 . ? C10 C9 1.41(2) . ? C10 H10 0.9300 . ? С9 Н9 0.9300 . ? C4 H4 0.9300 . ? 01 01 0.65(6) 3_666 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3

_geom_angle

This journal is © The Royal Society of Chemistry 2010

_geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 Bil Sel 89.0(3) . . ? N2 Bil N3 155.7(4) . . ? Sel Bil N3 83.3(3) . . ? N2 Bil Se2 61.3(3) . . ? Sel Bil Se2 92.67(6) . . ? N3 Bil Se2 141.8(3) . . ? N2 Bil Se3 144.6(3) . . ? Sel Bil Se3 91.66(6) . . ? N3 Bil Se3 59.0(3) . . ? Se2 Bi1 Se3 83.31(5) . . ? C13 Se3 Bi1 86.5(4) . . ? C7 Se2 Bi1 83.4(4) . . ? Cl Sel Bil 89.5(4) . . ? C13 N3 C17 119.3(13) . . ? C13 N3 Bil 101.6(9) . . ? C17 N3 Bi1 138.6(10) . . ? C7 N2 C11 117.8(13) . . ? C7 N2 Bil 102.0(9) . . ? C11 N2 Bi1 140.2(10) . . ? C5 N1 C1 119.1(16) . . ? C9 C8 C7 114.7(14) . . ? C9 C8 C12 124.2(16) . . ? C7 C8 C12 121.1(16) . . ? C2 C6 H6A 109.5 . . ? C2 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? C2 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? C16 C15 C14 119.8(14) . . ? C16 C15 H15 120.1 . . ? C14 C15 H15 120.1 . . ? C17 C16 C15 119.2(16) . . ? C17 C16 H16 120.4 . . ? C15 C16 H16 120.4 . . ? C16 C17 N3 120.6(15) . . ? C16 C17 H17 119.7 . . ? N3 C17 H17 119.7 . . ? C13 C14 C15 118.7(14) . . ? C13 C14 C18 121.2(14) . . ? C15 C14 C18 120.0(13) . . ? N2 C11 C10 122.9(16) . . ? N2 C11 H11 118.5 . . ? C10 C11 H11 118.5 . . ? N1 C5 C4 122.4(18) . . ? N1 C5 H5 118.8 . . ? C4 C5 H5 118.8 . . ? N1 C1 C2 122.2(16) . . ? N1 C1 Sel 116.0(11) . . ? C2 C1 Sel 121.6(13) . .

This journal is © The Royal Society of Chemistry 2010

C1 C2 C3 116.5(18) . . ? C1 C2 C6 121.2(19) . . ? C3 C2 C6 122.2(19) . . ? C14 C18 H18A 109.5 . . ? C14 C18 H18B 109.5 . . ? H18A C18 H18B 109.5 . . ? C14 C18 H18C 109.5 . . ? H18A C18 H18C 109.5 . . ? H18B C18 H18C 109.5 . . ? C8 C12 H12A 109.5 . . ? C8 C12 H12B 109.5 . . ? H12A C12 H12B 109.5 . . ? C8 C12 H12C 109.5 . . ? H12A C12 H12C 109.5 . . ? H12B C12 H12C 109.5 . . ? N2 C7 C8 125.4(14) . . ? N2 C7 Se2 113.3(11) . . ? C8 C7 Se2 121.3(11) . . ? C4 C3 C2 119(2) . . ? C4 C3 H3 120.5 . . ? C2 C3 H3 120.5 . . ? C11 C10 C9 116.3(16) . . ? C11 C10 H10 121.9 . . ? C9 C10 H10 121.9 . . ? N3 C13 C14 122.1(13) . . ? N3 C13 Se3 112.8(10) . . ? C14 C13 Se3 125.1(11) . . ? C8 C9 C10 122.8(15) . . ? C8 C9 H9 118.6 . . ? С10 С9 Н9 118.6 . . ? C3 C4 C5 120(2) . . ? C3 C4 H4 119.8 . . ? C5 C4 H4 119.8 . . ? _diffrn_measured_fraction_theta_max 0.995 27.54 _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full 0.995 _refine_diff_density_max 1.435 -1.864 _refine_diff_density_min _refine_diff_density_rms 0.258