Electronic Supplementary Information

Amidinate Aluminum Complexes: Synthesis, Characterization and Ring-Opening Polymerization of *rac*-Lactide

Feng Qian, Keyin Liu and Haiyan Ma*

Laboratory of Organometallic Chemistry, East China University of Science and

Technology, 130 Meilong Road, Shanghai 200237, P. R. China

Contents

- Figure S1. Schematic presentation of the core structures of amidinate aluminum complexes
- (angles (°), bond length (Å)).
- Figure S2. The ¹H NMR spectra of ligand 3a, complex 4a and complex 4a with isopropanol.
- Figure S3. The ¹H NMR spectra of *rac*-LA polymerization initiated by complex 4c.
- **Figure S4**. Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA.
- Figure S5. ESI-TOF mass spectrum of *rac*-lactide oligomer obtained with complex 4c.
- Table S1. The crystal data and structure refinement for complexes 4b, 4c and 5.
- **Table S2**. The selected bond lengths (Å) and bond angles (°) for complex **5**.
- Table S3. The selected bond lengths (Å) and bond angles (°) for complexes 4b and 4c.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S1. Schematic presentation of the core structures of amidinate aluminum complexes (angles (°), bond length (Å)).

Figure S2. The ¹H NMR spectra of ligand **3a**, complex **4a** and complex **4a** with isopropanol (CDCl₃, 400 MHz).

Figure S3. ¹H NMR spectra of *rac*-LA polymerization initiated by complex **4c** $([rac-LA]_0/[Al]_0 = 10, 70 \degree C$, in C₆D₆) (\Box : The proton signals of ligand **3c**, \diamondsuit : The proton signals of complex **4c**, \blacktriangle : The proton signals of *rac*-lactide, \blacklozenge : The proton signals of poly-lactide).

Figure S4. Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared with 4a/rac-lactide at 70 °C for 12 h (500 MHz, CDCl₃).

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

951.29

879.27

Figure S5. ESI-TOF mass spectrum of *rac*-lactide oligomer obtained with complex **4c** (in

toluene at 70 °C, $[rac-LA]_0/[Al]_0 = 10$, $[rac-LA]_0 = 1 \text{ mol/L}$).^a

^a: Currently, we have no reasonable explanation for the series marked with *, which correspond to oligomers end-caped with certain group having mass of 58 + 72.07m.

1977.79

1978.78

	4b	4 c	5
Empirical formula	$C_{27}H_{31}AlCl_2N_2$	$C_{27}H_{32}AlFN_2$	$C_{33}H_{45}AlN_2$
Formula weight	481.42	430.53	496.69
Crystal size/mm	$0.27\times0.25\times0.20$	$0.39 \times 0.37 \times 0.32$	$0.30 \times 0.26 \times 0.22$
Crystal system	Monoclinic	Triclinic	Trigonal
Space group	C2/c	P-1	P3(2)21
a/Å	24.771(4)	9.005(7)	14.948 (8)
<i>b</i> /Å	14.720(2)	10.674(8)	14.948 (8)
$c/{ m \AA}$	17.004(2)	14.0804(11)	12.2099(10)
$\alpha/^{\circ}$	90	69.3390(10)	90
ß/°	118.966(3)	83.1210(10)	90
$\gamma/^{\circ}$	90	83.9360(10)	120
Volume/Å ³	5424.8(13)	1254.22(17)	2362.8(3)
Ζ	8	2	3
Calcd density (Mg/m ³)	1.179	1.140	1.047
Absorp coeff/mm ⁻¹	0.288	0.104	0.086
F(000)	2032	460	810
θ range for data collection (°)	1.88 to 25.50	2.04 to 27.00	1.57 to 26.49
Limiting indices	$-29 \leq h \leq 28$	$-11 \le h \le 11$	$-18 \le h \le 16$
	$-15 \le k \le 17$	$-8 \le k \le 13$	$-18 \leq k \leq 18$
	$-20 \le l \le 19$	$-17 \le l \le 17$	$-15 \le l \le 15$
No. of reflns collected/unique	13973/5054	7464/5331	13607/3273
	$(R_{\rm int} = 0.1262)$	$(R_{\rm int} = 0.0330)$	$(R_{\rm int} = 0.0519)$
Data/retrains/parameters	5054/0/296	5331/0/286	3273/0/170
Goodness-of-fit on F ²	0.842	1.019	1.118
Final <i>R</i> indices[I $\geq 2\sigma(I)$]	$R_1 = 0.0628$	$R_1 = 0.0511$	$R_1 = 0.0550$
	$wR_2 = 0.1218$	$wR_2 = 0.1349$	$wR_2 = 0.1186$
R indices (all data)	$R_1 = 0.1676$	$R_1 = 0.0676$	$R_1 = 0.0619$
	$wR_2 = 0.1488$	$wR_2 = 0.1444$	$wR_2 = 0.1219$
Largest diff. peak and hole/e $Å^{-3}$	0.242 and -0.247	0.324 and -0.185	0.332 and -0.160

Table S1. The cr	vstal data and str	ructure refinement f	for complexes 4 h	4c and 5
				,

Al-N1	1.9381(18)	Al-C18	1.945(3)
C1-N1	1.334(2)	N1-C6	1.426(2)
N1-Al-N1*	68.61(9)	Al-N1-C1	90.73(13)
N1-C1-N1*	109.9(2)	C2-C1-Al	179.999(1)
N1-Al-C18	113.34(10)	N1-Al-C18*	118.24(11)

Table S2. The selected bond lengths (Å) and bond angles (°) for complex ${\bf 5}$

Table S3. The selected bond lengths (Å) and bond angles (°) for complexes 4b and 4c

	4b	4c
Al-N1	1.949(4)	1.9701(14)
Al-N2	1.950(4)	1.9290(14)
N1-C1	1.331(5)	1.3269(19)
N2-C1	1.356(5)	1.340(2)
Al-C26	1.945(5)	1.944(2)
Al-C27	1.937(6)	1.943(2)
N1-C8	1.432(5)	1.427(2)
N2-C20	1.402(5)	1.401(2)
F…Al		2.794
N1-Al-N2	68.44(15)	67.56(6)
Al-N1-C1	91.4(3)	91.09(10)
Al-N2-C1	90.6(3)	92.50(10)
Al-N1-C8	142.4(3)	142.57(10)
Al-N2-C20	142.0(3)	135.85(12)
N1-C1-N2	109.4(4)	108.79(14)
N1-C1-C2	126.1(4)	124.51(14)
N2-C1-C2	124.4(4)	126.62(14)
C2-C1-Al	178.7(3)	175.96(11)
C26-Al-C27	120.4(3)	120.77(11)
Al-N2-C20-C25	-84.8(6)	-17.1(2)
N2-C20-C25-C12	-7.7(6)	
N2-C20-C25-F		-1.5(2)