Structural and electronic properties of luminescent copper(I) halide complexes of bis[2-(diphenylphosphano)phenyl] ether (DPEphos). Crystal structure of [CuCl(DPEphos)(dmpymtH]

P. Aslanidis^{*[a]} P. J. Cox^[b] and A. C. Tsipis,^{*[c]}

^[a] Aristotle University of Thessaloniki, Faculty of Chemistry, Inorganic Chemistry Laboratory

P.O. Box 135, GR- 541 24 Thessaloniki, Greece

E-mail: <u>aslanidi@chem.auth.gr</u>

^[b] School of Pharmacy, The Robert Gordon University,

Schoolhill, Aberdeen AB10 1FR, Scotland

E-mail: <u>p.j.cox@rgu.ac.uk</u>

^[c] Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina,

451 10 Ioannina, Greece

E-mail: <u>attsipis@uoi.gr</u>

*Corresponding authors

P. Aslanidis E-mail: aslanidi@chem.auth.gr

A. C. Tsipis E-mail: <u>attsipis@uoi.gr</u>

Table S1	Structural parameters of complexes 1-9 in their S_0 and T_1 states calculated at	
	the PEB1PBE/Def2-TZVP level.	S3
Table S2	Differences between selected structural parameters of S_0 and T_1 states of	
	complexes 1-9 calculated at the PEB1PBE/Def2-TZVP level of theory.	S4
Table S3-S1	1 Principal singlet-singlet optical transitions ($f > 0.01$) for the absorptions	
	of 1-6, 8 and 9, calculated in the gas phase using the PBE/Def2-TZVP	
	method.	S5-S13
Fig. S1.	Absorption and emission spectra of complexes 1-9 computed with TD-DFT	
	calculations at the PEB0/Def2-TZVP level in the gas phase.	S14
Fig. S2	Absorption and emission spectra of complexes 1-9 computed with TD-DFT	
	calculations at the PEB0/Def2-TZVP level in CH ₂ Cl ₂ solution.	S15
Fig. S3-S10	IR and normal modes of complexes 1-6, 8 and 9 in the S_0 and T_1 states	
	computed at the PEB0/Def2-TZVP level of theory.	S16-S23
Table S12	Cartesian Coordinates and energy data of the Stationary Points on the	
	Potential Energy Surface of the [CuX(DPEphos)(thione)] complexes (1-9) in	
	both the S_0 and T_1 states.	S24-S52

Supplementary Material (ESI) for Dalton Transactions This journal is (C). The Royal Society of Chemistry 2010 This calculated at the PEB0/Def2-TZVP level of theory.^a

Parameter	1	2	3	4	5	6	7	8	9
$R_{\rm e}({\rm Cu-X})$	2.390 (2.312)	2.514 (2.427)	2.702 (2.606)	2.392 (2.280)	2.520 (2.408)	2.707 (2.591)	2.416 (2.377)	2.517 (2.405)	2.697 (2.589)
$R_{\rm e}({\rm Cu-S})$	2.383 (2.252)	2.384 (2.260)	2.391 (2.269)	2.376 (2.264)	2.382 (2.267)	2.388 (2.273)	2.371 (2.290)	2.378 (2.267)	2.382 (2.271)
$R_{\rm e}({\rm Cu-P1})$	2.306 (2.405)	2.312 (2.428)	2.331 (2.444)	2.295 (2.429)	2.310 (2.442)	2.329 (2.458)	2.364 (2.424)	2.314 (2.444)	2.330 (2.458)
$R_{\rm e}({\rm Cu-P2})$	2.354 (2.329)	2.360 (2.331)	2.362 (2.338)	2.357 (2.342)	2.360 (2.343)	2.363 (2.347)	2.317 (2.356)	2.362 (2.347)	2.369 (2.347)
$R_{\rm e}({\rm S-C1})$	1.697 (1.745)	1.696 (1.746)	1.695 (1.744)	1.688 (1.767)	1.687 (1.766)	1.686 (1.764)	1.697 (1.816)	1.693 (1.767)	1.691 (1.764)
$R_{\rm e}({\rm C1-N})$	1.360 (1.389)	1.360 (1.389)	1.360 (1.390)	1.371 (1.376)	1.371 (1.376)	1.371 (1.376)	1.371 (1.377)	1.369 (1.374)	1.369 (1.375)
$R_{\rm e}({\rm P1-C2})$	1.834 (1.834)	1.836 (1.834)	1.837 (1.833)	1.836 (1.830)	1.835 (1.831)	1.836 (1.832)	1.834 (1.861)	1.836 (1.831)	1.836 (1.831)
$R_{\rm e}({\rm P1-C4})$	1.837 (1.832)	1.837 (1.833)	1.838 (1.834)	1.836 (1.831)	1.837 (1.832)	1.838 (1.833)	1.836 (1.865)	1.837 (1.832)	1.838 (1.833)
$R_{\rm e}({\rm P2-C6})$	1.834 (1.823)	1.833 (1.824)	1.833 (1.824)	1.833 (1.820)	1.833 (1.820)	1.833 (1.821)	1.843 (1.863)	1.834 (1.820)	1.833 (1.821)
$R_{\rm e}({\rm P2-C8})$	1.844 (1.834)	1.840 (1.834)	1.838 (1.835)	1.840 (1.837)	1.839 (1.837)	1.838 (1.837)	1.837 (1.867)	1.839 (1.837)	1.839 (1.837)
<(X-Cu-S)	111.8 (121.1)	114.0 (124.0)	115.9 (126.0)	111.8 (127.5)	113.6 (128.0)	115.7 (129.2)	111.0 (118.1)	113.8 (129.2)	115.9 (130.2)
<(S-Cu-P1)	111.0 (108.5)	110.3 (103.9)	107.1 (100.5)	112.9 (106.2)	110.9 (104.5)	107.6 (102.3)	111.8 (112.7)	110.0 (103.1)	107.6 (100.6)
<(P1-Cu-P2)	112.7 (112.5)	112.6 (113.3)	113.0 (114.1)	112.8 (117.8)	113.1 (116.5)	113.3 (116.1)	113.0 (116.0)	112.8 (116.9)	112.9 (116.7)
<(P2-Cu-X)	98.3 (96.9)	98.6 (99.8)	99.9 (101.1)	97.3 (100.5)	98.5 (101.4)	99.8 (102.1)	99.2 (102.3)	98.9 (100.8)	99.6 (101.8)
<(Cu-P1-C10)	109.4 (110.1)	108.6 (110.0)	108.5 (110.1)	109.2 (106.6)	108.6 (107.7)	108.5 (108.2)	109.5 (110.7)	109.2 (107.3)	108.7 (108.0)
<(Cu-P2-C12)	119.0 (116.8)	119.3 (116.1)	117.9 (115.2)	119.7 (116.1)	119.6 (116.4)	118.5 (116.4)	118.0 (116.2)	118.5 (116.2)	118.4 (116.1)
<(Cu-S-C1-N)	4.7 (20.4)	5.9 (24.6)	3.8 (31.0)	7.6 (15.8)	7.4 (18.7)	4.9 (22.9)	7.1 (18.0)	3.5 (14.7)	2.7 (19.6)
<(Cu-P1-C2-C3)	48.2 (50.1)	48.4 (53.6)	52.2 (55.9)	45.6 (49.5)	48.3 (50.9)	51.7 (51.9)	52.9 (45.9)	47.8 (51.8)	50.3 (53.7)
<(Cu-P1-C4-C5)	15.1 (15.9)	15.7 (18.6)	17.3 (22.9)	15.2 (16.3)	16.2 (19.0)	18.0 (24.4)	17.7 (24.0)	17.4 (19.6)	19.2 (24.1)
<(Cu-P2-C6-C7)	62.0 (68.5)	70.8 (67.0)	67.8 (67.8)	73.1 (76.4)	73.5 (76.2)	70.9 (74.7)	65.6 (66.2)	69.2 (75.1)	69.8 (75.3)
<(Cu-P2-C8-C9)	20.2 (21.2)	9.4 (20.8)	9.2 (18.6)	13.9 (20.2)	6.6 (16.1)	6.1 (11.1)	38.5 (33.8)	13.1 (15.3)	6.6 (10.6)
<(P1-C12-C13-O)	9.7 (7.8)	10.4 (7.6)	10.2 (7.3)	10.0 (7.2)	10.4 (7.0)	10.1 (7.0)	9.4 (47.9)	9.6 (7.0)	9.9 (7.0)

^a Numbers in parenthesis refer to the T₁ state.

Table S2 Differences between selected structural parameters of S_0 and T_1 states of complexes 1-9 calculated at the PEB1PBE/Def2-TZVP level of theory.^a

Parameter	1	2	3	4	5	6	7	8	9
$\Delta R_{\rm e}({\rm Cu-X})$	-0.078	-0.087	-0.096	-0.112	-0.112	-0.116	-0.146	-0.112	-0.078
$\Delta R_{\rm e}({\rm Cu-S})$	-0.131	-0.124	-0.122	-0.112	-0.115	-0.115	-0.138	-0.111	-0.131
$\Delta R_{\rm e}({\rm Cu-P1})$	0.099	0.116	0.113	0.134	0.132	0.129	0.090	0.130	0.099
$\Delta R_{\rm e}({\rm Cu-P2})$	-0.025	-0.029	-0.024	-0.015	-0.017	-0.016	-0.017	-0.015	-0.025
$\Delta R_{\rm e}({\rm S-C1})$	0.048	0.050	0.049	0.079	0.079	0.078	0.079	0.074	0.048
$\Delta R_{\rm e}({\rm C1-N})$	0.029	0.029	0.030	0.005	0.005	0.005	0.004	0.005	0.029
$\Delta R_{\rm e}({\rm P1-C2})$	0.000	-0.002	-0.004	-0.006	-0.004	-0.004	-0.005	-0.005	0.000
$\Delta R_{\rm e}({\rm P1-C4})$	-0.005	-0.004	-0.004	-0.005	-0.005	-0.005	-0.006	-0.005	-0.005
$\Delta R_{\rm e}({\rm P2-C6})$	-0.011	-0.009	-0.009	-0.013	-0.013	-0.012	-0.010	-0.014	-0.011
$\Delta R_{\rm e}({\rm P2-C8})$	-0.010	-0.006	-0.003	-0.003	-0.002	-0.001	-0.003	-0.002	-0.010
$\Delta \leq (X-Cu-S)$	9.3	10.0	10.1	15.7	14.4	13.5	10.3	15.4	9.3
$\Delta \leq (S-Cu-P1)$	-2.5	-6.4	-6.6	-6.7	-6.4	-5.3	0.4	-6.9	-2.5
∆<(P1-Cu-P2)	-0.2	0.7	1.1	5.0	3.4	2.8	0.7	4.1	-0.2
$\Delta \leq (P2-Cu-X)$	-1.4	1.2	1.2	3.2	2.9	2.3	3.4	1.9	-1.4
∆<(Cu-P1-C10)	0.7	1.4	1.6	-2.6	-0.9	-0.3	0.8	-1.9	0.7
∆<(Cu-P2-C12)	-2.2	-3.2	-2.7	-3.6	-3.2	-2.1	-0.6	-2.3	-2.2
$\Delta \leq (Cu-S-C1-N)$	4.7	20.4	5.9	24.6	3.8	31.0	7.6	15.8	7.4
∆<(Cu-P1-C2-C3)	48.2	50.1	48.4	53.6	52.2	55.9	45.6	49.5	48.3
∆<(Cu-P1-C4-C5)	15.1	15.9	15.7	18.6	17.3	22.9	15.2	16.3	16.2
∆<(Cu-P2-C6-C7)	62.0	68.5	70.8	67.0	67.8	67.8	73.1	76.4	73.5
∆<(Cu-P2-C8-C9)	20.2	21.2	9.4	20.8	9.2	18.6	13.9	20.2	6.6
Δ<(P1-C12-C13-O)	9.7	7.8	10.4	7.6	10.2	7.3	10.0	7.2	10.4

 a The minus sign indicates a shortening of the corresponding bond length upon going from the S₀ to T₁ state while for the bond angles indicates that they become more acute.

Numbering Scheme

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S3** Principal singlet-singlet optical transitions (f > 0.01) for the absorptions of **1**, calculated in the gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	E(eV)	λ (nm)	OS,f	μ	% <i>CT</i>
H→L (85.0%), H-1→L (10.0%)	2.983	415.6	0.032	0.670	14
H→L+1 (94%)	3.477	356.6	0.019	0.265	14
H→L+2 (30%), H→L+3 (56%)	3.688	336.2	0.029	0.047	13
H→L+4 (78%)	3.779	328.1	0.058	0.466	11
H-3→L (19%), H→L+2 (25%), H→L+3 (11%), H→L+5 (11%)	3.807	325.7	0.081	0.171	9
H→L+5 (73%)	3.874	320.1	0.043	0.562	11
H-1→L+2 (31%), H-1→L+3 (54%)	3.970	312.3	0.035	0.249	14
H-1→L+5 (18%), H→L+6 (72%)	4.062	305.3	0.013	0.792	13
H→L+7 (84%)	4.128	300.3	0.065	0.930	12
H-3→L+1 (14%), H-2→L+4 (26%), H→L+9 (35%)	4.318	287.1	0.018	0.292	10
H-3→L+1 (51%), H→L+10 (23%)	4.332	286.2	0.016	0.673	9
H-3→L+1 (13%), H→L+10 (60%)	4.345	285.4	0.025	0.600	11
H-2→L+5 (28%), H-1→L+6 (51%)	4.360	284.4	0.015	0.268	13
H-1→L+7 (74%)	4.392	282.3	0.015	0.115	12
H-6→L (24%), H-5→L (15%), H-2→L+5 (28%), H-1→L+7 (11%)	4.410	281.2	0.016	0.358	7

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S4** Principal singlet-singlet optical transitions ($f \ge 0.01$) for the absorptions of **2**, calculated in the gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	E(eV)	λ (nm)	OS,f	μ	% <i>CT</i>
H-1→L (19%), H→L (75%)	2.951	420.2	0.018	0.504	16
H-1→L (70%), H→L (20%)	3.060	405.2	0.011	0.388	17
H→L+1 (94%)	3.445	359.9	0.016	0.428	16
H→L+2 (39%), H→L+3 (40%)	3.692	335.9	0.035	0.621	13
H→L+3 (10%), H→L+4 (10%)	3.767	329.2	0.048	0.721	3
H→L+3 (15%), H→L+4 (61%), H→L+5 (12%)	3.783	327.8	0.053	0.759	15
H-1→L+1 (12%), H-1→L+2 (25%), H-1→L+3 (24%), H→L+2 (13%)	3.840	322.9	0.018	0.439	14
H→L+4 (17%), H→L+5 (60%)	3.885	319.2	0.029	0.553	13
H-1→L+2 (29%), H-1→L+3 (53%)	3.954	313.6	0.039	0.636	16
H-2→L+1 (73%), H-1→L+4 (14%)	4.004	309.7	0.004	0.396	18
H-1→L+5 (25%), H→L+6 (41%), H→L+7 (22%)	4.099	302.4	0.014	0.368	15
H→L+6 (20%), H→L+7 (64%)	4.108	301.8	0.051	0.710	14
H-2→L+3 (86%)	4.200	295.2	0.010	0.318	16
H-5→L (16%), H-3→L+1 (72%)	4.273	290.1	0.022	0.453	10
H→L+9 (52%), H→L+10 (-30%)	4.314	287.4	0.010	0.133	14
H-2→L+5 (-20%), H-1→L+6 (40%), H-1→L+7 (32%)	4.350	285.0	0.020	0.309	18
H-2→L+5 (12%), H-1→L+6 (20%), H-1→L+7 (57%)	4.367	283.9	0.019	0.199	18
H-2→L+5 (55%), H-1→L+6 (32%)	4.373	283.5	0.010	0.432	17
H-3→L+2 (18%), H-1→L+8 (70%)	4.450	278.7	0.030	0.418	16

Supplementary Material (ESI) for Dalton Transactions **Table S5** Singlet-singlet optical transitions (f > 0.01) for the absorptions of **3**, calculated in the gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	<i>E</i> (eV)	λ (nm)	OS,f	μ	% <i>CT</i>
$H \rightarrow L (76\%), H-1 \rightarrow L (17\%)$	2.864	432.9	0.010	0.360	13
H-1→L (68%), H→L (20%)	2.987	415.1	0.010	0.348	14
H-3→L (18%), H→L+1 (76%)	3.436	360.8	0.019	0.533	13
H-3→L (69%), H→L+1 (19%)	3.452	359.2	0.024	0.359	10
H-4→L (11%), H-1→L+1 (15%), H-1→L+2 (17%), H→L+2 (41%)	3.623	342.2	0.012	0.451	12
H→L+3 (80%)	3.677	337.2	0.018	0.568	11
H-1→L+1 (59%), H→L+2 (30%)	3.690	336.1	0.029	0.359	14
H-4→L (11%), H→L+4 (65%)	3.768	329.1	0.012	0.493	11
H-4→L (14%), H-1→L+1 (14%), H-1→L+2 (19%), H→L+2 (12%), H→L+4 (12%)	3.774	328.5	0.023	0.354	11
H-1→L+3 (28%), H→L+5 (49%)	3.874	320.0	0.012	0.399	11
H-2→L+1 (67%), H-1→L+2 (10%)	3.893	318.5	0.015	0.461	10
H-2→L+1 (19%), H-1→L+3 (43%), H→L+5 (27%)	3.916	316.6	0.020	0.393	13
H-5→L (64%), H-1→L+4 (13%)	3.969	312.4	0.015	0.421	6
H-2→L+2 (52%), H-1→L+5 (24%)	4.016	308.8	0.018	0.345	10
H-2→L+2 (20%), H-1→L+5 (57%)	4.038	307.1	0.012	0.508	12
H→L+7 (73%)	4.079	303.9	0.026	0.458	10
H→L+6 (73%)	4.090	303.2	0.021	0.639	10
H-3→L+1 (86%)	4.139	299.5	0.041	0.453	10
H-3→L+2 (11%), H-2→L+5 (50%), H→L+9 (12%)	4.271	290.3	0.022	0.637	9
H-3→L+2 (30%), H-2→L+5 (31%), H→L+9 (19%)	4.286	289.3	0.043	0.410	10
H-1→L+7 (57%), H→L+10 (22%)	4.300	288.4	0.018	0.443	12
H-1→L+6 (44%), H-1→L+7 (14%), H→L+10 (27%)	4.310	287.6	0.021	0.335	13
H-1→L+6 (39%), H-1→L+7 (12%), H→L+10 (27%)	4.322	286.9	0.012	0.622	12
H-3→L+2 (29%), H-3→L+3 (19%), H→L+9 (28%)	4.335	286.0	0.041	0.533	9

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S6** Principal singlet-singlet optical transitions (f > 0.01) for the absorptions of **4**, calculated in the gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	E(eV)	λ (nm)	OS,f	μ	% <i>CT</i>
H→L (91%)	2.732	453.9	0.010	0.382	17
H-3→L (15%), H→L+1 (72%)	3.400	364.7	0.024	0.534	15
H-3→L (20%), H→L+2 (53%)	3.613	343.2	0.068	0.873	12
H→L+3 (91%)	3.722	333.1	0.042	0.680	16
H-1→L+1 (28%), H-1→L+2 (57%)	3.809	325.5	0.005	0.219	17
H→L+4 (75%), H→L+5 (13%)	3.815	325.0	0.028	0.549	16
H-1→L+3 (82%)	4.016	308.7	0.041	0.648	17
H-2→L+2 (13%), H-1→L+4 (70%)	4.073	304.4	0.015	0.387	18
H-2→L+2 (18%), H-1→L+5 (16%), H→L+6 (56%)	4.103	302.2	0.014	0.378	18
H→L+7 (75%)	4.123	300.7	0.052	0.716	13
H-6→L (20%), H-1→L+5 (36%)	4.154	298.5	0.017	0.405	9
H-2→L+3 (86%)	4.244	292.2	0.014	0.372	21
H-21→L (14%), H-15→L (11%), H-14→L (11%), H-6→L (14%), H-3→L+1 (20%)	4.316	287.2	0.047	0.665	5
H-3→L+1 (15%), H→L+9 (26%), H→L+10 (26%)	4.368	283.8	0.021	0.439	11
H-3→L+1 (26%), H-1→L+6 (25%), H→L+9 (23%)	4.386	282.7	0.059	0.738	13
H-2→L+5 (44%), H-1→L+6 (24%), H-1→L+7 (15%)	4.412	281.0	0.023	0.458	19

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S7** Principal singlet-singlet optical transitions ($f \ge 0.01$) for the absorptions of **5**, calculated in the

gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	$E\left(\mathrm{eV}\right)$	λ (nm)	OS, f	μ	% <i>CT</i>
H→L (88%)	2.719	456.0	0.010	0.336	15
H-3→L (37%), H→L+1 (48%)	3.389	365.9	0.013	0.400	12
H-3→L (45%), H-1→L+1 (21%), H→L+1 (15%)	3.452	359.2	0.012	0.370	12
H-1→L+1 (18%), H→L+2 (57%)	3.602	344.2	0.055	0.786	13
H→L+3 (88%)	3.751	330.5	0.042	0.675	15
H→L+4 (81%)	3.834	323.4	0.028	0.542	14
H→L+5 (73%)	3.940	314.6	0.011	0.333	13
H-1→L+3 (79%)	4.015	308.8	0.043	0.659	15
H-2→L+2 (43%), H-1→L+4 (-43%)	4.067	304.8	0.013	0.366	17
H-1→L+5 (56%), H→L+6 (28%)	4.122	300.8	0.017	0.406	16
H→L+7 (80%)	4.133	300.0	0.044	0.658	13
H-1→L+5 (31%), H→L+6 (60%)	4.164	297.7	0.014	0.371	16
H-2→L+3 (89%)	4.236	292.7	0.014	0.365	19
H→L+8 (77%)	4.284	289.4	0.013	0.356	13
H-22→L (12%), H-3→L+1 (42%)	4.300	288.3	0.067	0.795	5
H-22→L (19%), H-9→L (18%), H-3→L+1 (25%)	4.311	287.6	0.036	0.584	4
H-1→L+7 (83%)	4.392	282.3	0.018	0.403	16
H-2→L+5 (54%), H-1→L+6 (28%)	4.412	281.0	0.017	0.396	16

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S8** Principal singlet-singlet optical transitions (f > 0.01) for the absorptions of **6**, calculated in the gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	E(eV)	λ (nm)	OS,f	μ	% <i>CT</i>
H→L (89%)	2.630	471.5	0.004	0.253	13
H-1→L+1 (19%), H→L+1 (59%)	3.334	371.9	0.017	0.459	12
H-4→L (12%), H-1→L+1 (-30%), H→L+1 (31%), H→L+2 (13%)	3.454	358.9	0.012	0.373	13
H→L+2 (78%)	3.537	350.6	0.021	0.488	12
H-5→L (13%), H→L+3 (71%)	3.728	332.6	0.019	0.450	11
H-5→L (71%), H→L+3 (13%)	3.731	332.3	0.017	0.433	7
H→L+4 (82%)	3.823	324.3	0.023	0.494	12
H-1→L+3 (32%), H→L+5 (48%)	3.935	315.1	0.019	0.444	20
H-2→L+2 (23%), H-1→L+3 (43%), H→L+5 (25%)	3.972	312.1	0.021	0.462	14
H-2→L+2 (64%), H-1→L+3 (10%), H→L+5 (13%)	3.983	311.3	0.014	0.381	13
H-3→L+1 (73%)	4.067	304.8	0.067	0.822	9
H-1→L+5 (78%)	4.097	302.6	0.027	0.517	13
H→L+7 (77%)	4.106	302.0	0.040	0.633	11
H-2→L+3 (89%)	4.145	299.1	0.002	0.361	13
H-8→L (13%), H-4→L+1 (45%), H-3→L+2 (11%)	4.239	292.5	0.014	0.327	9
H-3→L+2 (59%)	4.273	290.2	0.011	0.337	7
H-22→L (-21%), H-8→L (19%), H-4→L+1 (34%)	4.290	289.0	0.012	0.367	9
H-2→L+5 (62%), H-1→L+7 (19%)	4.348	285.2	0.014	0.459	12

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S9** Principal singlet-singlet optical transitions (f > 0.01) for the absorptions of **7**, calculated

in the gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	E(eV)	λ (nm)	OS, f	μ	% <i>CT</i>
H→L (90%)	2.895	428.3	0.022	0.554	16
H→L+1 (71%)	3.774	328.5	0.079	0.922	13
H→L+2 (77%)	3.878	319.7	0.083	0.936	14
H→L+3 (90%)	3.963	312.9	0.014	0.380	16
H→L+4 (89%)	4.085	303.5	0.029	0.541	16
H→L+5 (59%), H-1→L+3 (32%)	4.178	296.8	0.032	0.556	17
H-1→L+3 (58%), H→L+5 (31%)	4.219	293.9	0.031	0.549	17
H→L+6 (79%)	4.335	286.0	0.018	0.411	14
H→L+7 (80%)	4.367	283.9	0.030	0.526	14
H-2→L+3 (74%)	4.392	282.3	0.021	0.440	19
H-1→L+5 (70%)	4.418	280.6	0.030	0.522	13
H-3→L+1 (48%), H→L+8 (21%)	4.482	276.6	0.111	1.003	10
H→L+8 (61%)	4.496	275.7	0.038	0.588	11
H-1→L+6 (46%), H→L+9 (19%)	4.563	271.7	0.011	0.316	12
H-8→L (31%), H-3→L+2 (20%), H-11→L (18%),	4.645	266.9	0.028	0.491	9
H-3→L+2 (63%)	4.689	264.4	0.022	0.435	8

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S10** Principal singlet-singlet optical transitions (f > 0.01) for the absorptions of **8**, calculated in the gas phase using the PBE/Def2-TZVP method.

Excitation (% composition)	E(eV)	λ (nm)	OS, f	μ	% <i>CT</i>
H→L (82%)	2.905	426.8	0.010	0.342	15
H-1→L (76%)	3.056	405.8	0.010	0.350	16
H→L+1 (93%)	3.447	359.7	0.018	0.456	17
H-3→L (27%), H-1→L+1 (19%), H-1→L+2 (30%)	3.625	342.1	0.013	0.384	13
H→L+2 (21%), H→L+3 (67%)	3.679	337.0	0.039	0.655	15
H-1→L+1 (59%), H→L+2 (18%)	3.729	332.5	0.049	0.729	15
H→L+3 (10%), H→L+4 (76%)	3.790	327.1	0.034	0.602	15
H-1→L+1 (15%), H-1→L+2 (30%), H→L+2 (18%), H→L+4 (12%)	3.798	326.4	0.024	0.502	14
H-1→L+3 (12%), H→L+5 (68%)	3.907	317.3	0.018	0.431	14
H-1→L+2 (17%), H-1→L+3 (53%), H→L+5 (14%)	3.932	315.3	0.023	0.486	16
H-4→L (34%), H-1→L+4 (51%)	4.006	309.5	0.011	0.331	15
H-4→L (52%), H-1→L+4 (29%)	4.010	309.2	0.014	0.378	13
H-1→L+5 (51%), H→L+6 (30%)	4.062	305.2	0.016	0.396	16
H→L+6 (23%), H→L+7 (62%)	4.077	304.1	0.044	0.665	15
H-2→L+2 (45%), H→L+6 (24%), H→L+7 (13%)	4.097	302.6	0.019	0.430	16
H-5→L (11%), H-2→L+3 (72%)	4.169	297.4	0.012	0.345	16
H-5→L (56%), H-2→L+3 (14%)	4.176	296.9	0.002	0.125	6
H-3→L+1 (50%), H-1→L+7 (40%)	4.310	287.6	0.063	0.770	14
H-2→L+5 (16%), H-1→L+6 (60%), H-1→L+7 (12%)	4.336	286.0	0.015	0.374	18
H-2→L+5 (37%), H→L+10 (40%)	4.373	283.5	0.010	0.303	15
H-3→L+2 (10%), H-1→L+8 (78%)	4.446	278.9	0.022	0.447	17

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 **Table S11** Principal singlet-singlet optical transitions (f > 0.01) for the absorptions of **9**, calculated in the gas

phase using the PBE/Def2-TZVP method.

Excitation (% composition)	E(eV)	λ (nm)	OS, f	μ	% <i>CT</i>
H-2→L (20%), H-1→L (60%), H→L (27%)	2.999	413.5	0.010	0.351	15
H→L+1 (87%)	3.429	361.6	0.016	0.434	13
H-3→L (82%)	3.463	358.1	0.017	0.452	9
H-1→L+1 (10%), H-1→L+2 (24%), H→L+2 (38%)	3.549	349.4	0.013	0.381	11
H→L+3 (80%)	3.654	339.3	0.014	0.400	12
H-1→L+1 (41%), H→L+2 (-36%)	3.668	338.0	0.050	0.749	12
H→L+4 (87%)	3.784	327.7	0.019	0.455	13
H-1→L+3 (67%), H→L+5 (12%)	3.885	319.1	0.018	0.438	13
H-5→L (62%), H-1→L+4 (12%), H→L+5 (13%)	3.957	313.4	0.021	0.463	8
H-5→L (14%), H-1→L+4 (65%)	3.971	312.3	0.023	0.484	11
H→L+6 (74%), H→L+7 (14%)	4.033	307.4	0.034	0.584	13
H-1→L+5 (76%)	4.048	306.3	0.017	0.410	13
H-3→L+1 (87%)	4.159	298.1	0.043	0.650	10
H-3→L+2 (41%), H-2→L+5 (22%)	4.272	290.2	0.035	0.575	8
H-3→L+2 (20%), H-2→L+5 (64%)	4.286	289.3	0.035	0.575	12
H-3→L+3 (81%)	4.341	285.6	0.023	0.460	9

Supplementary Material (ESI) for Dalton Transactions S14 This journal is (c) The Royal Society of Chemistry 2010 0.15 0.15 0.14 0.13 0.12 0.11 0.19 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Absorption Absorption Absorption 0.18 0.14 0.13 0.12 0.1 0.14 0.11 0.09 0.08 0.07 0.06 0.09 0.04 0.03 0.02 0.01 0.12 - 0.1 0.08 0.06 0.0 ο. 0.0 0.09 0.08 0.07 Emission 0.045 Emission 0.045 Emission 0.04 0.035 0.04 0.035 0.06 ≻0.05 0.03 0.03 0.029 0.025 189.3 0.04 0.02 0416 0.03 0.02 0.015 0.015 0.01 0.01 0.0 1317. 0.009 0.00 w. [CuCl(DPEphos)(py2SH)], 1 [CuCl(DPEphos)(pymtH)], 4 [CuCl(DPEphos)(dmpymtH)], 7 0.12 0.11 0.09 0.08 0.07 0.05 0.05 0.04 0.03 328 Absorption 0.14 0.13 0.12 0.11 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Absorption 0.09 Absorption 008 0.01 0.06 ∽oo5 004 003 002 001 0.0 432.3 0.0 0.065 0.055 0.055 0.045 0.045 0.045 0.035 0.035 0.035 0.08 0.075 0.065 0.055 0.055 0.045 0.045 0.045 0.045 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.015 0.015 0.015 0.015 0.005 430/ 0.049 Emission 0.0 Emission Emission 0.035 0.03 0.02 0.02 0.01 0.02 0.0 0.01 0.00 0.004 900 1000 800 900 1.000 [CuBr(DPEphos)(py2SH)], 2 [CuBr(DPEphos)(pymtH)], 5 [CuBr(DPEphos)(dmpymtH)], 8 0.16 0.15 0.14 0.13 0.12 0.11 0.12 0.11 0.12 0.09 0.08 0.07 0.06 0.05 0.05 0.05 0.04 0.03 0.02 0.01 0.16 0.15 0.14 0.13 0.12 0.11 0.19 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.03 0.02 0.01 0.11 0.0 0.09 0.08 0.07 Absorption Absorption Absorption 0.05 0.05 0.04 0.03 0.02 0.01 4323 0.0 0.0 0.055 0.045 0.045 0.035 0.035 0.025 0.025 0.015 0.04 Emission Emission Emission 0.05 0.045 0.045 0.04 0.0 0.035 0.03 0.03 0.025 0.025 0.015 0.015 0.029 0.0 0.015 0.01 0.01 1 351.8 0.0 Λ <u>4</u> 800 [CuI(DPEphos)(py2SH)], 3 [CuI(DPEphos)(pymtH)], 6 [CuI(DPEphos)(dmpymtH)], 9

Fig. S1. Absorption and emission spectra of complexes **1-9** computed with TD-DFT calculations at the PEB0/Def2-TZVP levels in the gas phase.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

[CuI(DPEphos)(py2SH)], 3

[CuI(DPEphos)(pymtH)], 6

[CuI(DPEphos)(dmpymtH)], 9

Fig. S2. Absorption and emission spectra of complexes **1-9** computed with TD-DFT calculations at the PEB0/Def2-TZVP levels in CH₂Cl₂ solution.

Fig. S3Infrared spectra along with the normal modes of the most intense absorption bands of complex 1 in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

Fig. S4Infrared spectra along with the normal modes of the most intense absorption bands of complex 2 in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

Fig. S5Infrared spectra along with the normal modes of the most intense absorption bands of complex 3 in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

 $v_{11} = 3172$

 $v_{10} = 3097$

 $v_9 = 1699$

Fig. S6Infrared spectra along with the normal modes of the most intense absorption bands of complex 4 in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Fig. S7Infrared spectra along with the normal modes of the most intense absorption bands of complex 5 in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

Fig. S8Infrared spectra along with the normal modes of the most intense absorption bands of complex **6** in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

Fig. S9Infrared spectra along with the normal modes of the most intense absorption bands of complex **8** in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

Fig. S10 Infrared spectra along with the normal modes of the most intense absorption bands of complex **9** in both the S_0 and T_1 states computed at the PEB0/Def2-TZVP level of theory (S_0 grey line, T_1 black/dashed line).

Surface of the [CuCl(DPEphos)(thione)] complexes (1-9) in both the S₀ and T₁ states.

[CuCl(DPEphos)(py2SH)], 1 (S₀)

Charge = 0 Multiplicity = 1Cu,0,-0.1830273491,-0.8449222159,-0.2944533809 P,0,-1.30237054,1.2054154955,-0.0039825262 P,0,2.1030386712,-0.6519291947,-0.0593733433 O,0,1.1689696112,1.4392153614,1.6715188696 C,0,2.8495042547,-1.2184920988,1.520156746 C,0,2.4666158641,-2.4792839726,1.9963105728 C,0,3.0092932507,-2.9806218949,3.17726946 C,0,3.9295015715,-2.2242121177,3.9026091596 C,0,4.3062008199,-0.9639639151,3.4405407884 C,0,3.7701345931,-0.4625654164,2.2547139434 C,0,3.1835907858,-1.4564872188,-1.3080636353 C,0,4.5517524228,-1.6742582564,-1.0898533701 C,0,5.3307204579,-2.2850048737,-2.0694322236 C.0.4.750850571,-2.6877274686,-3.2737952274 C,0,3.3900381326,-2.4830728049,-3.4913350089 C,0,2.6030621281,-1.8741348307,-2.5125153075 C.0.2.5797018516,1.115105424,-0.172195404 C,0,1.9336899631,2.0122273102,0.6963000317 C,0,2.1047326265,3.388983728,0.5776308893 C,0,2.9366270125,3.8872085841,-0.4240388233 C,0,3.595529922,3.0182827488,-1.2901285058 C,0,3.4143203641,1.6412693102,-1.1622581655 C,0,-1.1397371261,2.0932188175,1.6042400416 C,0,-2.2068719023,2.7178390237,2.263764459 C,0,-2.0324114767,3.3279395891,3.5047423154 C.0,-0.7814617521,3.3136480048,4.1193471346 C,0,0.2939393238,2.6950825101,3.4870913902 C,0,0.1135328429,2.1005940351,2.240023276 C,0,-0.9508947271,2.5370496894,-1.2225145562 C,0,-1.2062974376,3.8901837188,-0.9613139335 C,0,-0.9263917278,4.8577745923,-1.9234306238 C,0,-0.3897207645,4.4836522196,-3.1560040982 C,0,-0.1362010724,3.1395079968,-3.4223080108 C,0,-0.4103036277,2.1668734345,-2.460625216 C,0,-3.1168271582,0.9705966399,-0.1418421843 C,0,-3.8692402625,1.5043624085,-1.1940252189 C,0,-5.2309586509,1.2193231536,-1.3026689596 C,0,-5.8559481363,0.4019247572,-0.3635248285 C,0,-5.1103415117,-0.1397623406,0.6850276903 C.0.-3.7491845777.0.1330610883.0.7911750024 H,0,1.7251798223,-3.0650310895,1.445472518 H,0,2.7011707361,-3.9649807632,3.5383574629 H,0,4.3496221931,-2.6153310604,4.8327396682 H,0,5.0239130463,-0.3644025597,4.0065616112 H,0,4.0699031185,0.5263809263,1.8980244464 H,0,5.0086796604,-1.3720550022,-0.143861281 H,0,6.395782166,-2.4528136133,-1.8898330968 H,0,5.3628789734,-3.1702696281,-4.0403772415 H,0,2.9279821031,-2.8070992632,-4.42729722

This journal is (c) The Royal Society of Chemistry 2010 H,0,1.528409857,-1.7355064455,-2.6770544223 H,0,1.5831072377,4.0621313626,1.2605479916 H.0,3.0664055276,4.9674272801,-0.5243307482 H.0,4.2463449889,3.4102939212,-2.0746343865 H,0,3.91689548,0.9594784408,-1.8520571595 H,0,-3.1955865549,2.7125347269,1.7987519902 H,0,-2.8814890987,3.8081827868,3.9966002209 H.0,-0.6417594164,3.7786665392,5.0981560242 H,0,1.2818990463,2.6493263217,3.9495647705 H,0,-1.6226182434,4.1920804408,0.0029983617 H.0.-1.1274321441.5.9106172462.-1.7088623596 H,0,-0.1683390124,5.2437552054,-3.9098172079 H,0,0.2835862718,2.8399192784,-4.3857943514 H,0,-0.226909057,1.1089578553,-2.6716951711 H,0,-3.3891510389,2.1455450119,-1.9365240581 H,0,-5.8056030489,1.6431944326,-2.1301612763 H,0,-6.9234299918,0.1833306228,-0.4489844013 H,0,-5.5902833208,-0.7879694223,1.4228180835 H,0,-3.1652487848,-0.3167466182,1.5995058339 Cl.0.-0.9463536863.-1.345781468.-2.5029394503 S,0,-1.0844782034,-2.3510053079,1.3171883535 C,0,-3.1823059266,-4.1213310343,1.328413368 N,0,-2.6735230127,-3.060335238,-0.7114986058 C.0.-2.364430075.-3.2083769374.0.6046922928 C.0.-4.2143757375.-4.7863238734.0.7073374194 C,0,-4.4829970164,-4.5791372832,-0.6637756696 C,0,-3.6757637239,-3.6988990864,-1.3398722187 H.0,-2.960050433,-4.268502731,2.385944671 H.0,-2.0705377657,-2.4134023499,-1.2880181384 H.0.-4.8316121339.-5.4817729604.1.2823811264 H,0,-5.2948591314,-5.0941902222,-1.1768383186 H,0,-3.7833329113,-3.462103463,-2.4006626499

Sum of electronic and zero-point Energies=	-4888.627379
Sum of electronic and thermal Energies=	-4888.583650
Sum of electronic and thermal Enthalpies=	-4888.582706
Sum of electronic and thermal Free Energies=	-4888.709910

 $[CuCl(DPEphos)(py2SH)], 1 (T_1)$

Charge=0 Multiplicity=3	
Cu	-0.20378 -0.91054 -0.39412
Р	-1.32872 1.10108 -0.05588
Р	2.17792 -0.68261 -0.1541
0	1.07705 1.17984 1.70359
С	2.89441 -1.4334 1.35795
С	2.5448 -2.75911 1.64759
С	3.0733 -3.39721 2.76697
С	3.94586 -2.71552 3.61501
С	4.2895 -1.39325 3.33806
С	3.76785 -0.75347 2.2141
С	3.2644 -1.32677 -1.4817
С	4.63613 -1.54183 -1.28249
С	5.42754 -2.02284 -2.32212
С	4.85596 -2.29881 -3.56572

~	a 10155 a 00005 a 50	This jou
C	3.49155 -2.09905 -3.76	399'
С	2.69157 -1.61813 -2.72	2627
С	2.63291 1.08739 -0.04	222
С	1.91853 1.87177 0.87	923
С	2.09131 3.25167 0.94	607
С	2.99478 3.86489 0.07	909
С	3.71943 3.10791 -0.83	808
С	3.53504 1.72684 -0.89	687
Ċ	-1 22494 1 83595 1 62	469
C	-2 31716 2 41085 2 28	756
C	-2 18898 2 90793 3 58	378
C	-2.10090 2.90793 5.30	136
C	-0.90404 2.82722 4.24 0.12517 2.26102 2.60	425
C	0.13317 2.20102 3.00	433
C	0.003/9 1.78257 2.30	201
C	-0.82182 2.48021 -1.13	5381
C	-1.08/58 3.81464 -0.81	533
C	-0./1665 4.84296 -1.67	755
С	-0.07575 4.54915 -2.88	3185
С	0.18863 3.22438 -3.22	235
С	-0.18009 2.18883 -2.36	5353
С	-3.11536 0.89858 -0.35	5912
С	-3.71798 1.40583 -1.51	623
С	-5.06613 1.15585 -1.76	5746
С	-5.81862 0.39457 -0.87	7508
С	-5.21927 -0.12517 0.27	/249
С	-3.8729 0.11867 0.520	693
H	1.84498 -3.29202 0.99	0794
Н	2 79236 -4 43086 2 98	326
Н	4 35526 -3 21494 4 49	0665
Н	4 97072 -0 85341 4 00	002
Н		1
н Ц	5.09444 - 0.28251 - 2.001	1
П П	5.06444 - 1.55660 - 0.50	5062
П	0.49339 - 2.18903 - 2.1	7020 7020
H	5.4//95 -2.6808/ -4.5/	1938
H	3.03691 -2.32829 -4.73	8092
H	1.6138/ -1.48//1 -2.8	/636
H	1.51/44 3.83918 1.66	497
Н	3.12841 4.9483 0.124	493
Н	4.42495 3.59156 -1.51	688
Н	4.09015 1.13375 -1.62	2724
Н	-3.28537 2.45589 1.78	374
Н	-3.05469 3.35047 4.08	3102
Н	-0.86426 3.20102 5.26	6602
Н	1.10283 2.16993 4.10	159
Н	-1.58509 4.05317 0.12	2791
Н	-0.92928 5.88028 -1.40)695
Н	0.21692 5.35766 -3.55	5665
Н	0.68701 2.9881 -4.16	557
Н	0.00003 1.14607 -2.64	103
H	-3 13312 1 99515 -2 22	2525
Н	-5 52833 1 55703 -2 67	7271
Н	-6 8735 0 19521 -1 07	927
Н	-5.79180 -0.7/(670) 0.04	544
Н	-3.40758 = 0.31567 = 1.41	521
C1	-3.40750 -0.51507 1.41	200
U	-0.0/000 -1.24028 -2.38	500

S	-0.96468 -2.22773 1.26658
С	-3.40786 -3.36276 1.71816
Ν	-2.85792 -2.84902 -0.55089
С	-2.52702 -2.84883 0.79783
С	-4.67379 -3.8993 1.3106
С	-4.96687 -3.87169 -0.06741
С	-4.0745 -3.34982 -0.97536
Η	-3.10976 -3.35301 2.76814
Н	-2.22645 -2.40332 -1.22405
Η	-5.36764 -4.31911 2.03797
Η	-5.91369 -4.26741 -0.44335
Н	-4.26119 -3.301 -2.04781

Sum of electronic and zero-point Energies=	-4888.546238
Sum of electronic and thermal Energies=	-4888.501901
Sum of electronic and thermal Enthalpies=	-4888.500957
Sum of electronic and thermal Free Energies=	-4888.630062

 $[CuBr(DPEphos)(py2SH)], 2 (S_0)$

Charge = 0 Multiplicity = 1Cu,0,-0.138823,-0.812055,-0.220311 P,0,-1.193335,1.282063,0.051865 P.0.2.15633.-0.690886.0.032454 O,0,1.266091,1.443957,1.742265 C,0,2.859455,-1.251827,1.633116 C,0,2.429735,-2.490472,2.126568 C,0,2.94285,-2.987961,3.322384 C.0.3.879601,-2.249192,4.04452 C,0,4.302712,-1.01023,3.565043 C,0,3.796393,-0.513083,2.364625 C,0,3.249125,-1.529617,-1.183432 C,0,4.604565,-1.78172,-0.92608 C,0,5.39522,-2.413543,-1.882698 C,0,4.840441,-2.803719,-3.102891 C,0,3.492212,-2.564787,-3.35992 C,0,2.694572,-1.934501,-2.403849 C,0,2.668228,1.065128,-0.098483 C,0,2.03644,1.986908,0.754537 C,0,2.22227,3.359152,0.606283 C,0,3.056207,3.827057,-0.407906 C,0,3.704962,2.933063,-1.256049 C,0,3.508516,1.561225,-1.099419 C,0,-1.018115,2.178188,1.655133 C,0,-2.062472,2.855746,2.298927 C,0,-1.873009,3.469759,3.535684 C,0,-0.629551,3.407372,4.162414 C,0,0.424403,2.739935,3.54431 C,0,0.229271,2.142489,2.300941 C.0.-0.799848.2.601875.-1.167657 C,0,-1.201992,3.933746,-0.995901 C,0,-0.872374,4.8957,-1.946961 C,0,-0.136895,4.537324,-3.078335 C,0,0.266071,3.215612,-3.254407

C,0,-3.00731,1.071719,-0.104033 C,0,-3.681774,1.414364,-1.282171 C,0,-5.038425,1.125256,-1.428393 C,0,-5.737177,0.489135,-0.404408 C,0,-5.06915,0.132491,0.768062 C,0,-3.712842,0.41229,0.915495 Br,0,-1.005935,-1.373726,-2.511781 S,0,-1.094064,-2.127007,1.523892 C,0,-3.372911,-3.633437,1.789671 N,0,-2.876349,-2.793576,-0.352532 C,0,-2.503359,-2.878745,0.952709 C,0,-4.511415,-4.213917,1.280044 C,0,-4.84124,-4.076176,-0.086552 C.0.-3.983125,-3.350785,-0.874196 H,0,1.675905,-3.061565,1.57732 H,0,2.598725,-3.95504,3.697295 H,0,4.276551,-2.637255,4.986034 H,0,5.033541,-0.424515,4.128747 H,0,4.132054,0.458922,1.993502 H,0,5.042322,-1.489742,0.032016 H,0,6.450108,-2.607816,-1.672437 H,0,5.461762,-3.303236,-3.85085 H,0,3.04785,-2.878626,-4.307754 H,0,1.629706,-1.768861,-2.599657 H,0,1.709649,4.05274,1.275374 H,0,3.196464,4.903488,-0.5317 H,0,4.359341,3.301417,-2.049035 H,0,4.001668,0.859629,-1.776101 H,0,-3.04762,2.88786,1.827562 H,0,-2.704894,3.991307,4.014706 H,0,-0.478781,3.875106,5.138271 H,0,1.406884,2.659877,4.013692 H,0,-1.772246,4.223808,-0.109779 H,0,-1.189854,5.931889,-1.804336 H,0,0.122559,5.293627,-3.823751 H,0,0.842088,2.92877,-4.137517 H,0,0.241678,1.208427,-2.440487 H,0,-3.142534,1.9061,-2.094565 H,0,-5.550601,1.401317,-2.353576 H,0,-6.801264,0.267733,-0.51963 H,0,-5.605949,-0.374816,1.573853 H,0,-3.192639,0.105872,1.827041 H,0,-3.102425,-3.728918,2.841884 H,0,-2.244015,-2.265131,-1.004432 H,0,-5.166336,-4.787842,1.941125 H,0,-5.737895,-4.526478,-0.511742 H,0,-4.129117,-3.179118,-1.942887

Sum of electronic and zero-point Energies=-7002.271931Sum of electronic and thermal Energies=-7002.227884Sum of electronic and thermal Enthalpies=-7002.226940Sum of electronic and thermal Free Energies=-7002.355100

Charge = 0 Multiplicity = 3Cu,0,-0.3285472227,-0.688362186,-0.4129730587 P.0.-0.6368621073,1.6060743803,-0.1373676619 P,0,1.9976246378,-1.3686073505,-0.2670919202 O,0,1.7012808582,0.8253522388,1.5291104743 C,0,2.4178364563,-2.2928365707,1.2599592256 C,0,1.6425044348,-3.4202112923,1.5639344745 C,0,1.9229636273,-4.1820468337,2.6954098917 C,0,2.9710710688,-3.8201451747,3.5413027882 C,0,3.7397044517,-2.6943984404,3.2497798374 C,0,3.4664177655,-1.9333493365,2.1134939785 C,0,2.7536485567,-2.4022195212,-1.578769295 C,0,3.9361978736,-3.1253029945,-1.3633591961 C,0,4.4897303216,-3.8856583356,-2.3901114553 C,0,3.8660779827,-3.9354805934,-3.6381457067 C,0,2.6850005676,-3.228635523,-3.8535571723 C,0,2.1244450663,-2.4658690901,-2.8281201943 C,0,3.0801399039,0.1086835262,-0.2181565293 C,0,2.7262381957,1.1299948303,0.6799674779 C,0,3.4031306717,2.3465890074,0.6991406494 C,0,4.4555585928,2.550909808,-0.1923816821 C,0,4.8297784379,1.5511384487,-1.0866711808 C,0,4.1412995648,0.338412587,-1.0981764674 C,0,-0.1897506524,2.2908404568,1.5084171348 C,0,-0.958798028,3.2454334145,2.1862526101 C,0,-0.5935071944,3.6889002438,3.4561601362 C,0.0.5433672813,3.1737123178,4.0761541278 C,0,1.3226240261,2.2233788671,3.4206866027 C,0,0.9613127384,1.7989863129,2.1450619956 C,0,0.3240456647,2.6485732409,-1.3006631178 C,0,0.5799699166,3.9993774598,-1.0252509483 C,0,1.2900359816,4.7771062919,-1.9358850645 C,0,1.7533585587,4.2135240329,-3.1256787826 C,0,1.5018010262,2.8717091915,-3.4029556381 C,0,0.7908519239,2.087334802,-2.4946861909 C,0,-2.3709127738,2.1139223883,-0.384718061 C,0,-2.7688982946,2.8270853654,-1.5217908409 C,0,-4.1154665544,3.1282411901,-1.7202811436 C,0,-5.072057289,2.7166126034,-0.7941615996 C,0,-4.6819482449,1.9946347474,0.3340369001 C,0,-3.3392987683,1.6875991792,0.5358797616 Br,0,-1.3045654355,-0.9732082495,-2.6163051295 S,0,-1.2495270021,-1.4874345701,1.4897225149 C,0,-3.8429425349,-1.5227686,2.3550234357 N,0,-3.4896414709,-1.6026900711,-0.0064604844 C,0,-2.9826305747,-1.5223496562,1.2843554385 C,0,-5.2618306799,-1.6043326354,2.1637142399 C,0,-5.7274600458,-1.6789377873,0.8357421221 C,0,-4.8535897283,-1.670337622,-0.226601144 H,0,0.8085269488,-3.6997194348,0.9145751109 H,0,1.3112144719,-5.0585862683,2.9218625979 H,0,3.186588225,-4.4151595448,4.4322691187 H,0,4.561450687,-2.4055927328,3.9100890298

This journaLis (c) The Royal Society of Chemistry 2010 H,0,4.0772064033,-1.0558229937,1.8867325761 H,0,4.4219305006,-3.0977634336,-0.3844417253 H.0.5.4104014039.-4.4475878841.-2.2137586295 H.0.4.2994809417,-4.5366734095,-4.4415848893 H,0,2.1835994414,-3.2767047625,-4.8232923204 H,0,1.1798808398,-1.9366541573,-2.991801367 H,0,3.1029159979,3.1273827771,1.4001173691 H,0,4.9852834803,3.5064792269,-0.1833741776 H,0,5.6541018067,1.7153340596,-1.7837860562 H,0,4.422244296,-0.4413495326,-1.8097288753 H,0,-1.8646834282,3.6352339542,1.7164908214 H,0,-1.2089051889,4.4328885383,3.9668510664 H,0,0.8232873903,3.5066919867,5.0783251082 H,0,2.2088807835,1.7890641268,3.8874223036 H,0,0.2244524786,4.4463220926,-0.09346327 H,0,1.4836978569,5.8297084247,-1.7146507647 H,0,2.3129936911,4.8248456291,-3.8382133477 H,0,1.8611034009,2.4252375997,-4.3331468192 H,0,0.5753287237,1.0386988539,-2.7189320579 H,0,-2.0274748399,3.144497996,-2.2578999208 H,0,-4.4168570575,3.6855173518,-2.6105579829 H,0,-6.127149924,2.9506925679,-0.9562933537 H,0,-5.4239784984,1.6469978828,1.0562901624 H.0.-3.049494515,1.1056835694,1.414500364 H,0,-3.4098270849,-1.4669414542,3.3553306522 H,0,-2.8489400877,-1.5206044886,-0.7991592814 H,0,-5.9438437033,-1.6168760781,3.0130965566 H,0,-6.7974013672,-1.74593871,0.6234697313 H,0,-5.1662016258,-1.7184112509,-1.2692748819 Sum of electronic and zero-point Energies= -7002.191140 Sum of electronic and thermal Energies= -7002.146541 Sum of electronic and thermal Enthalpies= -7002.145597 Sum of electronic and thermal Free Energies= -7002.275539

 $[CuI(DPEphos)(py2SH)], 3 (S_0)$

Charge = 0 Multiplicity = 1Cu,0,-0.2834097518,-0.6073560104,-0.4139754154 P,0,-0.4865707269,1.7225255278,-0.0859803896 P,0,1.9138083158,-1.3640504559,-0.2346303686 O,0,1.8501698106,0.870372961,1.5737443002 C,0,2.3543351918,-2.2211487962,1.3288729918 C,0,1.5343486079,-3.2818832102,1.7353997717 C,0,1.8253427441,-3.9912359369,2.8983263764 C,0,2.9296049683,-3.6417281156,3.6749908838 C,0,3.7442305748,-2.5809724867,3.2815968386 C,0,3.4596037294,-1.873931346,2.1138798459 C,0,2.6455206689,-2.4855587713,-1.4934925522 C,0,3.8068597007,-3.231283884,-1.2427834701 C,0,4.3363880492,-4.0593931318,-2.2292250112 C,0,3.7107835136,-4.1556433543,-3.4735086788 C,0,2.5520089763,-3.4244868085,-3.725261893 C,0,2.0167691042,-2.5950216916,-2.7390717652 C,0,3.0346422035,0.0866471807,-0.2904172423

C,0,2.7773204161,1.1365271227,0.6079313777 C,0,3.4574361556,2.3489920357,0.5225265707 C,0,4.4163360499,2.5219833516,-0.4741559701 C,0,4.6997142849,1.491205084,-1.3667558496 C,0,4.0102337083,0.2826563907,-1.2723408897 C,0,0.0115838462,2.4120376551,1.5530332887 C,0,-0.7033949665,3.4020394427,2.2407730531 C,0,-0.3020749555,3.8404374151,3.5014112533 C,0,0.8225365831,3.2840648818,4.1085115376 C,0,1.5497915132,2.2984501379,3.4467356831 C,0,1.149626981,1.87887166,2.1800716752 C,0,0.3840171357,2.8456001333,-1.2524472399 C,0,0.4946580063,4.2258356127,-1.033868028 C,0,1.1718894703,5.029424152,-1.9470935934 C,0,1.745642148,4.4628304804,-3.0870451867 C,0,1.6405868188,3.0917713429,-3.3092124908 C,0,0.9645925905,2.2841928849,-2.3945633714 C,0,-2.2417457207,2.2353636107,-0.2129457604 C,0,-2.7325727135,2.9147020504,-1.3338850966 C,0,-4.0951969128,3.1888983793,-1.4518831549 C,0,-4.9828275794,2.7875243935,-0.4561729363 C,0,-4.5030127878,2.0986741913,0.6591088566 C,0,-3.1447391232,1.8153137344,0.776967125 I,0,-1.496831072,-0.8478754309,-2.8161596271 H,0,0.6537415227,-3.5448438312,1.1431428795 H,0,1.1773166617,-4.8161174189,3.204569211 H,0,3.1531774065,-4.1944926328,4.5909731208 H,0,4.6102447906,-2.3007045049,3.8868758242 H,0,4.1051972824,-1.0461410943,1.8095621636 H,0,4.2956392393,-3.1693299631,-0.267090009 H,0,5.2407010422,-4.6378892899,-2.0236193196 H,0,4.1255428776,-4.8099432935,-4.2447372246 H,0,2.0483203559,-3.5036773486,-4.6918285084 H,0,1.0927094369,-2.0412602099,-2.9321243537 H,0,3.2290041877,3.1514900847,1.2262659373 H,0,4.944665932,3.475381964,-0.5488343801 H,0,5.4528707706,1.6278710676,-2.1457073867 H,0,4.2188753728,-0.520064335,-1.9831682481 H,0,-1.6019587946,3.8247197263,1.7851261094 H,0,-0.8780790127,4.6139999193,4.0145357908 H,0,1.133586928,3.6136786064,5.1026861848 H,0,2.4271432358,1.8316604259,3.8987798223 H,0,0.0532618661,4.6761408131,-0.1410980643 H,0,1.2537075934,6.1046750917,-1.768438838 H,0,2.2775403968,5.0949853437,-3.8028223192 H,0,2.0880519763,2.6417587084,-4.1986191096 H,0,0.8721425828,1.2087480336,-2.5652942904 H,0,-2.0475973505,3.2284306915,-2.1244240723 H,0,-4.4626850244,3.7198818933,-2.3335183936 H,0,-6.0493450285,3.0075733641,-0.549212016 H,0,-5.1924235769,1.7728946376,1.4424101356 H,0,-2.7785079741,1.2576164296,1.6435181875 S,0,-1.4848934969,-1.4899919519,1.4558132481 C,0,-4.074357399,-2.2163079488,2.004490403 N,0,-3.5780267397,-1.5723377213,-0.2032664513

Supplementary Material (ESI) for Dalton Transactions

Supplementary Material (ESI) for Dalton Transactions C,0,-3.1090279453,-1.7678218339,1.0587175051 C,0,-5.3832614367,-2.4177899468,1.6325348937 C,0,-5.7996291042,-2.1876398859,0.3018332996 C,0,-4.8509677941,-1.7631117411,-0.593472603 H,0,-3.7355252278,-2.3898898433,3.026464061 H,0,-2.8892079324,-1.2688331974,-0.928181605 H,0,-6.1079670928,-2.7610594263,2.3758375526 H,0,-6.8309883683,-2.3414381814,-0.0145947606 H,0,-5.048442716,-1.5580685833,-1.6481708244 Sum of electronic and zero-point Energies= -4726.436347 Sum of electronic and thermal Energies= -4726.392131 Sum of electronic and thermal Enthalpies= -4726.391186 Sum of electronic and thermal Free Energies= -4726.520483

 $[CuI(DPEphos)(py2SH)], 3 (T_1)$

Charge = 0 Multiplicity = 3Cu,0,-0.3449991026,-0.7146116768,-0.4916774628 P,0,-0.7009141311,1.5784166972,-0.2059987587 P,0,2.0013505872,-1.3846954103,-0.3491930989 O,0,1.6031629799,0.7784444143,1.4676025887 C,0,2.3753411712,-2.3558897993,1.159933559 C,0,1.621475044,-3.5170119719,1.380705622 C,0,1.8662234996,-4.3120453101,2.4973976769 C,0,2.85503008,-3.9498747213,3.4118043372 C,0,3.601152197,-2.7911375402,3.2031349973 C,0,3.3644479526,-1.9967618028,2.0815183826 C,0,2.8187873555,-2.3674548287,-1.6643265876 C,0,3.9636383579,-3.1372157132,-1.4107477149 C,0,4.5696585527,-3.853382119,-2.4400164471 C,0,4.0374590264,-3.8122805898,-3.7297568003 C,0,2.8946375679,-3.057536068,-3.9854664811 C,0,2.2829293105,-2.3397817347,-2.9574823506 C,0,3.0740805842,0.0962395095,-0.2151475516 C,0,2.6722654394,1.1000962965,0.6833282175 C,0,3.345783125,2.3165183321,0.7603238223 C,0,4.4444941667,2.5370523731,-0.0691900695 C,0,4.8680228913,1.5539574666,-0.9600690204 C,0,4.1812201265,0.3423927628,-1.0319006561 C,0,-0.2923710355,2.2310255992,1.4629458604 C,0,-1.0746918699,3.1669757166,2.1506543536 C,0,-0.7266284785,3.5844731893,3.4343273314 C,0,0.4053576893,3.0619815953,4.0569877485 C,0,1.1978362447,2.1298193029,3.3911248139 C.0,0.8538477471,1.7326411689,2.1023545463 C,0,0.3100321256,2.6336804975,-1.3152719722 C,0,0.5060748993,3.9949908841,-1.0423244054 C,0,1.2579593477,4.7815751185,-1.9104904498 C,0,1.8230259827,4.2166502446,-3.0551199871 C,0,1.6332044197,2.8642490287,-3.3292025475 C,0,0.8812014133,2.0720796244,-2.4617565363 C,0,-2.4193281552,2.1151006452,-0.5002610928 C,0,-2.7701661274,2.8344506317,-1.6491235716 C,0,-4.1042096601,3.1583729675,-1.8902592473 C,0,-5.0962475877,2.764181558,-0.994489595

C,0,-4.753642323,2.0347928181,0.1441545744 C,0,-3.4234510514,1.7039367536,0.3884168812 I,0,-1.4454009351,-1.1061144444,-2.8216550785 H,0,0.8338680349,-3.798413796,0.6766064899 H,0,1.2724675257,-5.2149501172,2.6585682504 H,0,3.0417975919,-4.5709220307,4.2914125071 H,0,4.3768432772,-2.5023746211,3.916965574 H,0,3.9589509563,-1.0942979788,1.919193566 H,0,4.3786955469,-3.1805446592,-0.4005672319 H,0,5.4602166491,-4.4520354595,-2.2327164713 H,0,4.511417371,-4.3795597249,-4.5349012031 H,0,2.4623564826,-3.0342430825,-4.9887579776 H,0,1.3660424937,-1.7774721459,-3.1571887868 H,0,3.0076941983,3.0848921616,1.4576088919 H,0,4.9716352414,3.4925380652,-0.014141982 H,0,5.7292516475,1.7305676129,-1.6077766289 H,0,4.5002954636,-0.4235459767,-1.7423452448 H,0,-1.9763024065,3.5635026151,1.6784964821 H,0,-1.3518282388,4.3143602809,3.9533966122 H.0.0.6711109757,3.3747933756,5.0694568254 H,0,2.0805290147,1.6903332005,3.859783671 H,0,0.0703791491,4.4431265546,-0.1457938588 H,0,1.404392373,5.8423393863,-1.6921044068 H,0,2.414399202,4.8354300123,-3.7347739332 H,0,2.0733542335,2.4162617484,-4.2231247552 H,0,0.7200834028,1.0131559245,-2.679730464 H,0,-2.0017026611,3.1386120258,-2.3627321222 H,0,-4.3676082382,3.7194387599,-2.790096841 H,0,-6.1414125062,3.0176372374,-1.1886696959 H,0,-5.5227097101,1.7022587363,0.8448363077 H,0,-3.1729697509,1.1174891745,1.2763835655 S,0,-1.1187505563,-1.4922955491,1.4946453783 C,0,-3.6220635646,-1.3193638478,2.5914205807 N,0,-3.4903319206,-1.6491293147,0.2298306029 C,0,-2.8625088559,-1.4602231804,1.4557475848 C,0,-5.0537926287,-1.3577221098,2.5331048135 C,0,-5.6421438628,-1.5484649314,1.2663462693 C,0,-4.8701329874,-1.6838790629,0.1363657732 H,0,-3.0980584096,-1.1852016637,3.5393573722 H,0,-2.9204674427,-1.657169603,-0.6161667555 H,0,-5.6556799097,-1.2540807661,3.4352392531 H,0,-6.7286000149,-1.5944267281,1.1579568274 H,0,-5.2778115934,-1.8265969875,-0.8640036695 Sum of electronic and zero-point Energies= -4726.356645 Sum of electronic and thermal Energies= -4726.311958 Sum of electronic and thermal Enthalpies= -4726.311014Sum of electronic and thermal Free Energies= -4726.441304

[CuCl(DPEphos)(pymtH)], 4 (S₀)

Supplementary Material (ESI) for Dalton Transactions

Charge = 0 Multiplicity = 1 Cu,0,-0.238140438,-0.6400171063,-0.3456689189 P,0,-0.4654645487,1.6818664213,0.0084588055 P,0,1.9438090211,-1.3742001086,-0.1591339544 O,0,1.9339574661,0.898147435,1.6030528686 C,0,2.4198913664,-2.1897736312,1.4146091581 C,0,1.5707025394,-3.1914005036,1.9023472864 C.0.1.8837372528,-3.8685838982,3.0787839707 C,0,3.0406618429,-3.544663296,3.7867348467 C,0,3.8847216598,-2.5412817063,3.3126774265 C,0,3.5773917781,-1.8663421037,2.1317536979 C,0,2.6262218314,-2.5264401729,-1.4167320385 C,0,3.7950547308,-3.2698519717,-1.1976564762 C,0,4.2788461665,-4.1244992433,-2.1851069935 C,0,3.5994300684,-4.2486562165,-3.3982716605 C,0,2.432466495,-3.5199515347,-3.6175468988 C,0,1.9415106624,-2.6644838368,-2.6303782414 C,0,3.0604940975,0.0755776146,-0.2808281811 C,0,2.8284753588,1.1449777356,0.6020073702 C,0,3.5000633535,2.3575289197,0.4661304702 C,0,4.4254175817,2.5106840162,-0.56504158 C,0,4.683976696,1.4606795803,-1.4425843381 C,0,4.0023679505,0.252411224,-1.2984980461 C,0,0.0760324292,2.4169501956,1.6113465139 C.0.-0.6245909466.3.4176334933.2.2986684482 C,0,-0.1819509115,3.8944650992,3.5310094123 C,0,0.9719527246,3.3680836163,4.1093374629 C,0,1.6866410751,2.3738898078,3.4469798982 C,0,1.2446648743,1.9148783506,2.2080081188 C.0.0.3180509384,2.810230738,-1.214785286 C,0,0.3795294702,4.1983631042,-1.0291136598 C,0,0.9954807847,5.0078351935,-1.9796306688 C,0,1.5575132789,4.4387604785,-3.1241213898 C,0,1.500263602,3.0601019158,-3.3140574468 C,0,0.8847856531,2.246122779,-2.3628434409 C,0,-2.2445252319,2.1153039316,-0.0644922681 C,0,-2.8113977687,2.6439938921,-1.2307914448 C,0,-4.1900696259,2.8355443082,-1.3214243494 C,0,-5.0194650511,2.5000865956,-0.2527881649 C,0,-4.4636522915,1.9616759397,0.9089180784 C,0,-3.0882883166,1.7609753338,1.0009815374 H,0,0.6496092431,-3.4328387594,1.3644272874 H,0,1.2112924346,-4.6457411396,3.4500826566 H,0,3.2818937801,-4.0711989067,4.7136184584 H,0,4.7907486262,-2.2802591904,3.8657624348 H,0,4.2430614003,-1.0804577159,1.764985266 H,0,4.3252750991,-3.1864169452,-0.245431076 H,0,5.1892779686,-4.7017554715,-2.00458416 H,0,3.9786555083,-4.9231363873,-4.1704297456 H,0,1.8882948646,-3.6214602529,-4.5598378666 H,0,1.0115854593,-2.1105076903,-2.7966258977 H,0,3.292045926,3.1752888664,1.1585551925 H,0,4.9474156854,3.4637730371,-0.6784515371 H,0,5.4111207744,1.5818696425,-2.2483742108 H,0,4.1900367963,-0.5656113624,-1.9977751813 H,0,-1.544546294,3.8187260588,1.8668020818 H,0,-0.7481977576,4.6745275014,4.0451103929 H,0,1.315591297,3.7278875814,5.0820594978 H,0,2.5861367355,1.9300248122,3.8780741436 H,0,-0.0516968703,4.6506400136,-0.1325080477

Supplementary Material (ESI) for Dalton Transactions

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 H,0,1.0392693247,6.0892032174,-1.8263630594 H,0,2.042392134,5.0751583195,-3.8690001346 H,0,1.9384909694,2.6087325487,-4.2074320169 H,0,0.8252677124,1.165118938,-2.5116043397 H,0,-2.1710590993,2.902265397,-2.0769173339 H,0,-4.6161275054,3.252789982,-2.2373819804 H,0,-6.0987643912,2.6574847578,-0.3237011768 H,0,-5.1048530551,1.6904915825,1.7516429434 H,0,-2.6682380542,1.315230918,1.9065014189 Br,0,-1.2934832635,-0.772906957,-2.630563194 S.0.-1.5927896122,-1.5560501118,1.3869063276 N,0,-4.1890683016,-2.0208842272,1.691732061 N,0,-3.5045230544,-1.4048938051,-0.4573045638 C,0,-3.1884948442,-1.6683179642,0.8502030505 C,0,-5.4171181143,-2.0824886169,1.2332209808 C,0,-5.7847391723,-1.8028553946,-0.1008050524 C,0,-4.7510402372,-1.458696244,-0.9373050346 H,0,-2.7231866081,-1.1588785957,-1.1210365716 H,0,-6.1889690678,-2.37443888,1.9575102671 H.0.-6.8154696586.-1.8597878612.-0.4478182993 H,0,-4.8604573974,-1.2186790848,-1.9980859047 Sum of electronic and zero-point Energies= -7018.290516 Sum of electronic and thermal Energies= -7018.246585 Sum of electronic and thermal Enthalpies= -7018.245641Sum of electronic and thermal Free Energies= -7018.373689

[CuCl(DPEphos)(pymtH)], 4 (T₁)

Charge = 0 Multiplicity = 3Cu,0,-0.2888910784,-0.6474392193,-0.4835895654 P,0,-0.6683219975,1.6332286004,-0.1039000308 P,0,2.0211502925,-1.4138581716,-0.2837893772 O,0,1.7188418927,0.8151951349,1.4416458794 C,0,2.4201261442,-2.2745311052,1.2823878047 C,0,1.5785208205,-3.3223080091,1.6783677763 C,0,1.8452293529,-4.0333376279,2.8460741876 C,0,2.9450267849,-3.697717859,3.6347160692 C,0,3.7796968031,-2.6485958028,3.2516188926 C,0,3.520103004,-1.9388165363,2.0800704316 C,0,2.7775739935,-2.4899816116,-1.559121292 C,0,3.927372567,-3.2507208405,-1.3018518417 C,0,4.4826641146,-4.0419934112,-2.3043635971 C,0,3.8941236868,-4.0848547009,-3.5692676047 C,0,2.7453667038,-3.3394794796,-3.8265678329 C,0,2.1828856135,-2.5464598588,-2.8259363793 C,0,3.0997644897,0.0662769189,-0.2831588405 C,0,2.7451423973,1.1077396346,0.5918733118 C,0,3.4168461864,2.3271045488,0.5786876032 C,0,4.4645981443,2.5123075405,-0.3229983433 C,0,4.8394180552,1.4924431876,-1.194302584 C,0,4.155810131,0.2768196917,-1.1734511408 C,0,-0.1624023532,2.2812643273,1.5364480066 C,0,-0.8926303793,3.2346912488,2.2566456744 C,0,-0.4601092733,3.6692056579,3.5082473764 C,0,0.7064957479,3.1483222357,4.0648144228

C,0,1.4495812938,2.201558396,3.3640795488 C,0,1.0201566,1.7862084552,2.1071192851 C,0,0.2449369333,2.7216378611,-1.2677635144 C.0.0.4134105669,4.085761582,-0.9884626763 C,0,1.1093192169,4.9011782311,-1.8760848837 C,0,1.646581405,4.363171104,-3.0467158147 C,0,1.4810005589,3.009447894,-3.328478632 C,0,0.7841278039,2.1870072519,-2.4428332026 C,0,-2.4181446983,2.0983904437,-0.2933535384 C,0,-2.8683409261,2.6641481378,-1.4929942944 C,0,-4.2237674333,2.9328706236,-1.672011438 C,0,-5.1381920283,2.6335807115,-0.6637875279 C,0,-4.6962758265,2.0566685532,0.5267012205 C,0,-3.3438413234,1.782915733,0.7127283227 H,0,0.7007249062,-3.5740308662,1.0776880443 H,0,1.1803789332,-4.8463867749,3.1469594753 H,0,3.1487899931,-4.2517797568,4.5543677114 H,0,4.640976653,-2.3796707982,3.8684664032 H,0,4.1793281193,-1.1189053441,1.7830498044 H.0.4.3857174427.-3.2299784823.-0.3097349432 H,0,5.3774843509,-4.6335117968,-2.095036212 H,0,4.3289004492,-4.7102004519,-4.3532311829 H,0,2.270933007,-3.3808844951,-4.8100618525 H.0.1.2637286786, -1.9856288061, -3.0235852917 H.0.3.1166885123.3.1246522269.1.2604827431 H,0,4.9902713633,3.4699861415,-0.3403186912 H,0,5.6609978998,1.6426816926,-1.8977666363 H,0,4.4369420106,-0.5204416097,-1.8655004541 H.0.-1.8196557167.3.6321297599.1.8377274198 H,0,-1.0468908487,4.4103170997,4.0553075927 H,0,1.0378936871,3.4736863227,5.0536312978 H,0,2.3577701687,1.7631218272,3.7821705668 H,0,0.0027125607,4.5134990496,-0.0706695924 H,0,1.2339888264,5.9634883924,-1.6518341085 H,0,2.1954973002,5.0045138987,-3.7409395788 H,0,1.8976031912,2.582545506,-4.2437605994 H.0.0.6392769803,1.1282228215,-2.6737702345 H,0,-2.159181238,2.8931850888,-2.291185872 H,0,-4.5654635342,3.3753005429,-2.6108182514 H,0,-6.2011870859,2.8408210171,-0.8096125227 H,0,-5.4066049426,1.7949611989,1.3139672629 H,0,-3.0179709295,1.3075246372,1.6411655223 Br,0,-1.1873903916,-0.9146949715,-2.701513493 S,0,-1.2479869192,-1.2164872433,1.4904476883 N,0,-3.7760570888,-1.3198734903,2.2234119894 N,0,-3.4198169938,-1.472622339,-0.0945338616 C,0,-2.9862707937,-1.3327487829,1.2036675053 C,0,-5.1365343809,-1.4700584363,2.0087853224 C,0,-5.6506939235,-1.56003006,0.7100457297 C,0,-4.7879808576,-1.5457352757,-0.363035565 H,0,-2.7509044868,-1.4383653165,-0.8649448226 H,0,-5.7739067785,-1.4893305182,2.894279491 H,0,-6.7268485302,-1.635038514,0.5375671155 H,0,-5.0790065809,-1.5957085653,-1.4106087811 Sum of electronic and zero-point Energies= -7018.218410

Sum of electronic and thermal Energies=	-7018.173899
Sum of electronic and thermal Enthalpie	s= -7018.172955
Sum of electronic and thermal Free Ener	gies= -7018.303141

$[CuBr(DPEphos)(pymtH)], 5 (S_0)$

Charge = 0 Multiplicity = 3Cu,0,-0.2888910784,-0.6474392193,-0.4835895654 P,0,-0.6683219975,1.6332286004,-0.1039000308 P,0,2.0211502925,-1.4138581716,-0.2837893772 O,0,1.7188418927,0.8151951349,1.4416458794 C,0,2.4201261442,-2.2745311052,1.2823878047 C,0,1.5785208205,-3.3223080091,1.6783677763 C,0,1.8452293529,-4.0333376279,2.8460741876 C,0,2.9450267849,-3.697717859,3.6347160692 C,0,3.7796968031,-2.6485958028,3.2516188926 C,0,3.520103004,-1.9388165363,2.0800704316 C,0,2.7775739935,-2.4899816116,-1.559121292 C,0,3.927372567,-3.2507208405,-1.3018518417 C,0,4.4826641146,-4.0419934112,-2.3043635971 C,0,3.8941236868,-4.0848547009,-3.5692676047 C,0,2.7453667038,-3.3394794796,-3.8265678329 C,0,2.1828856135,-2.5464598588,-2.8259363793 C,0,3.0997644897,0.0662769189,-0.2831588405 C,0,2.7451423973,1.1077396346,0.5918733118 C,0,3.4168461864,2.3271045488,0.5786876032 C,0,4.4645981443,2.5123075405,-0.3229983433 C,0,4.8394180552,1.4924431876,-1.194302584 C,0,4.155810131,0.2768196917,-1.1734511408 C,0,-0.1624023532,2.2812643273,1.5364480066 C,0,-0.8926303793,3.2346912488,2.2566456744 C,0,-0.4601092733,3.6692056579,3.5082473764 C,0,0.7064957479,3.1483222357,4.0648144228 C,0,1.4495812938,2.201558396,3.3640795488 C,0,1.0201566,1.7862084552,2.1071192851 C,0,0.2449369333,2.7216378611,-1.2677635144 C,0,0.4134105669,4.085761582,-0.9884626763 C,0,1.1093192169,4.9011782311,-1.8760848837 C,0,1.646581405,4.363171104,-3.0467158147 C,0,1.4810005589,3.009447894,-3.328478632 C,0,0.7841278039,2.1870072519,-2.4428332026 C,0,-2.4181446983,2.0983904437,-0.2933535384 C,0,-2.8683409261,2.6641481378,-1.4929942944 C,0,-4.2237674333,2.9328706236,-1.672011438 C,0,-5.1381920283,2.6335807115,-0.6637875279 C,0,-4.6962758265,2.0566685532,0.5267012205 C,0,-3.3438413234,1.782915733,0.7127283227 H,0,0.7007249062,-3.5740308662,1.0776880443 H,0,1.1803789332,-4.8463867749,3.1469594753 H,0,3.1487899931,-4.2517797568,4.5543677114 H,0,4.640976653,-2.3796707982,3.8684664032 H,0,4.1793281193,-1.1189053441,1.7830498044 H,0,4.3857174427,-3.2299784823,-0.3097349432 H,0,5.3774843509,-4.6335117968,-2.095036212 H,0,4.3289004492,-4.7102004519,-4.3532311829

H,0,2.270933007,-3.3808844951,-4.8100618525 H,0,1.2637286786,-1.9856288061,-3.0235852917 H.0.3.1166885123.3.1246522269.1.2604827431 H,0,4.9902713633,3.4699861415,-0.3403186912 H,0,5.6609978998,1.6426816926,-1.8977666363 H,0,4.4369420106,-0.5204416097,-1.8655004541 H,0,-1.8196557167,3.6321297599,1.8377274198 H,0,-1.0468908487,4.4103170997,4.0553075927 H,0,1.0378936871,3.4736863227,5.0536312978 H,0,2.3577701687,1.7631218272,3.7821705668 H,0,0.0027125607,4.5134990496,-0.0706695924 H,0,1.2339888264,5.9634883924,-1.6518341085 H,0,2.1954973002,5.0045138987,-3.7409395788 H,0,1.8976031912,2.582545506,-4.2437605994 H,0,0.6392769803,1.1282228215,-2.6737702345 H,0,-2.159181238,2.8931850888,-2.291185872 H,0,-4.5654635342,3.3753005429,-2.6108182514 H,0,-6.2011870859,2.8408210171,-0.8096125227 H,0,-5.4066049426,1.7949611989,1.3139672629 H.0.-3.0179709295,1.3075246372,1.6411655223 Br,0,-1.1873903916,-0.9146949715,-2.701513493 S,0,-1.2479869192,-1.2164872433,1.4904476883 N,0,-3.7760570888,-1.3198734903,2.2234119894 N.0,-3.4198169938,-1.472622339,-0.0945338616 C.0.-2.9862707937,-1.3327487829,1.2036675053 C,0,-5.1365343809,-1.4700584363,2.0087853224 C,0,-5.6506939235,-1.56003006,0.7100457297 C,0,-4.7879808576,-1.5457352757,-0.363035565 H,0,-2.7509044868,-1.4383653165,-0.8649448226 H,0,-5.7739067785,-1.4893305182,2.894279491 H,0,-6.7268485302,-1.635038514,0.5375671155 H,0,-5.0790065809,-1.5957085653,-1.4106087811

[CuBr(DPEphos)(pymtH)], **5** (T₁)

Supplementary Material (ESI) for Dalton Transactions

Charge = 0 Multiplicity = 3Cu,0,-0.2888910784,-0.6474392193,-0.4835895654 P,0,-0.6683219975,1.6332286004,-0.1039000308 P,0,2.0211502925,-1.4138581716,-0.2837893772 O,0,1.7188418927,0.8151951349,1.4416458794 C,0,2.4201261442,-2.2745311052,1.2823878047 C,0,1.5785208205,-3.3223080091,1.6783677763 C,0,1.8452293529,-4.0333376279,2.8460741876 C,0,2.9450267849,-3.697717859,3.6347160692 C,0,3.7796968031,-2.6485958028,3.2516188926 C,0,3.520103004,-1.9388165363,2.0800704316 C,0,2.7775739935,-2.4899816116,-1.559121292 C,0,3.927372567,-3.2507208405,-1.3018518417 C,0,4.4826641146,-4.0419934112,-2.3043635971 C,0,3.8941236868,-4.0848547009,-3.5692676047 C,0,2.7453667038,-3.3394794796,-3.8265678329 C,0,2.1828856135,-2.5464598588,-2.8259363793 C,0,3.0997644897,0.0662769189,-0.2831588405 C,0,2.7451423973,1.1077396346,0.5918733118 C,0,3.4168461864,2.3271045488,0.5786876032

C,0,4.4645981443,2.5123075405,-0.3229983433 C,0,4.8394180552,1.4924431876,-1.194302584 C,0,4.155810131,0.2768196917,-1.1734511408 C,0,-0.1624023532,2.2812643273,1.5364480066 C,0,-0.8926303793,3.2346912488,2.2566456744 C,0,-0.4601092733,3.6692056579,3.5082473764 C,0,0.7064957479,3.1483222357,4.0648144228 C,0,1.4495812938,2.201558396,3.3640795488 C,0,1.0201566,1.7862084552,2.1071192851 C,0,0.2449369333,2.7216378611,-1.2677635144 C,0,0.4134105669,4.085761582,-0.9884626763 C,0,1.1093192169,4.9011782311,-1.8760848837 C,0,1.646581405,4.363171104,-3.0467158147 C,0,1.4810005589,3.009447894,-3.328478632 C,0,0.7841278039,2.1870072519,-2.4428332026 C,0,-2.4181446983,2.0983904437,-0.2933535384 C,0,-2.8683409261,2.6641481378,-1.4929942944 C,0,-4.2237674333,2.9328706236,-1.672011438 C,0,-5.1381920283,2.6335807115,-0.6637875279 C,0,-4.6962758265,2.0566685532,0.5267012205 C,0,-3.3438413234,1.782915733,0.7127283227 H,0,0.7007249062,-3.5740308662,1.0776880443 H,0,1.1803789332,-4.8463867749,3.1469594753 H.0.3.1487899931,-4.2517797568,4.5543677114 H,0,4.640976653,-2.3796707982,3.8684664032 H,0,4.1793281193,-1.1189053441,1.7830498044 H,0,4.3857174427,-3.2299784823,-0.3097349432 H,0,5.3774843509,-4.6335117968,-2.095036212 H,0,4.3289004492,-4.7102004519,-4.3532311829 H,0,2.270933007,-3.3808844951,-4.8100618525 H,0,1.2637286786,-1.9856288061,-3.0235852917 H,0,3.1166885123,3.1246522269,1.2604827431 H,0,4.9902713633,3.4699861415,-0.3403186912 H,0,5.6609978998,1.6426816926,-1.8977666363 H,0,4.4369420106,-0.5204416097,-1.8655004541 H,0,-1.8196557167,3.6321297599,1.8377274198 H.0,-1.0468908487,4.4103170997,4.0553075927 H,0,1.0378936871,3.4736863227,5.0536312978 H,0,2.3577701687,1.7631218272,3.7821705668 H,0,0.0027125607,4.5134990496,-0.0706695924 H,0,1.2339888264,5.9634883924,-1.6518341085 H,0,2.1954973002,5.0045138987,-3.7409395788 H,0,1.8976031912,2.582545506,-4.2437605994 H,0,0.6392769803,1.1282228215,-2.6737702345 H,0,-2.159181238,2.8931850888,-2.291185872 H,0,-4.5654635342,3.3753005429,-2.6108182514 H,0,-6.2011870859,2.8408210171,-0.8096125227 H,0,-5.4066049426,1.7949611989,1.3139672629 H,0,-3.0179709295,1.3075246372,1.6411655223 Br,0,-1.1873903916,-0.9146949715,-2.701513493 S,0,-1.2479869192,-1.2164872433,1.4904476883 N,0,-3.7760570888,-1.3198734903,2.2234119894 N,0,-3.4198169938,-1.472622339,-0.0945338616 C,0,-2.9862707937,-1.3327487829,1.2036675053 C,0,-5.1365343809,-1.4700584363,2.0087853224

Supplementary Material (ESI) for Dalton Transactions

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 C,0,-4.7879808576,-1.5457352757,-0.363035565 H,0,-2.7509044868,-1.4383653165,-0.8649448226 H,0,-5.7739067785,-1.4893305182,2.894279491 H,0,-6.7268485302,-1.635038514,0.5375671155 H,0,-5.0790065809,-1.5957085653,-1.4106087811 Sum of electronic and zero-point Energies= -7018.218410 Sum of electronic and thermal Energies= -7018.173899 Sum of electronic and thermal Enthalpies= -7018.172955 Sum of electronic and thermal Free Energies= -7018.303141

 $[CuI(DPEphos)(pymtH)], 6 (S_0)$

Charge = 0 Multiplicity = 1Cu,0,-0.2673820938,-0.6129770246,-0.4181300246 P,0,-0.4857381963,1.7140015972,-0.0712663236 P,0,1.9264240778,-1.3713162047,-0.2309493915 O,0,1.8630089579,0.8699689858,1.5678560224 C,0,2.3553553679,-2.2224609868,1.3382283154 C,0,1.5229363762,-3.2712870489,1.7499516263 C,0,1.8024160726,-3.9751921569,2.9189266592 C,0,2.9088960994,-3.6325363626,3.6952709938 C,0,3.7372094807,-2.5847060681,3.2957615998 C,0,3.4634542307,-1.8825241304,2.1225267685 C,0,2.6577334313,-2.4985709554,-1.4843842145 C,0,3.8094184785,-3.2558937259,-1.2246972581 C,0,4.3396115286,-4.0874638351,-2.2079489865 C,0,3.7246969021,-4.1751992628,-3.4580945629 C,0,2.5753936901,-3.4323305342,-3.7189379331 C,0,2.0392175533,-2.6000062221,-2.7358054264 C,0,3.0504350104,0.0772385545,-0.2899111834 C,0,2.7933921322,1.131173653,0.6040673187 C,0,3.4761790738,2.3419873697,0.515175027 C,0,4.4384244807,2.5083888622,-0.4794110265 C,0,4.7221018096,1.4733779735,-1.3669844622 C,0,4.0290611258,0.267001485,-1.2700103264 C,0,0.027963182,2.4136355565,1.5582278125 C,0,-0.6760801276,3.4121635394,2.2452726308 C,0,-0.2604311997,3.8582841264,3.4982877373 C,0,0.8679418419,3.3019075671,4.0985381194 C,0,1.5854443208,2.3094317041,3.436776845 C,0,1.1713069083,1.8827395274,2.1769640469 C,0,0.3523352502,2.8445582231,-1.2539680294 C,0,0.4066359367,4.232306544,-1.0635139808 C,0,1.0656284317,5.0420807175,-1.9843462405 C,0,1.6781574575,4.4740970592,-3.1033459947 C,0,1.6295340796,3.0957123279,-3.2973749296 C,0.0.9709079461,2.2822105551,-2.3753090297 C,0,-2.2518470089,2.1956711252,-0.1715955937 C,0,-2.7782956069,2.8042297705,-1.3173126814 C,0,-4.1479239936,3.0470377953,-1.4218234867 C,0,-5.0083195537,2.6844014875,-0.3876856006 C,0,-4.4931778795,2.0670111497,0.7533974135 C,0,-3.1273298793,1.8150432744,0.8585842422 H,0,0.6414041671,-3.5303326885,1.1573243138 H,0,1.1428239419,-4.7886589858,3.2305202295

This journal is (c) The Royal Society of Chemistry 2010 H,0,3.1232208709,-4.1802358412,4.6164411906 H,0,4.6050212545,-2.3102566506,3.9011004939 H.0.4.1190981264,-1.0643107047,1.8136331728 H,0,4.29004275,-3.2006226156,-0.2445755695 H,0,5.2362305366,-4.6752039387,-1.9951295008 H,0,4.1401058027,-4.8319999748,-4.2267981529 H,0,2.079880509,-3.5048757926,-4.6902253568 H,0,1.1223643824,-2.0372264698,-2.9360525082 H,0,3.2485776583,3.1478652549,1.2152235511 H,0,4.9694977299,3.4600972076,-0.5561686815 H,0,5.4785144351,1.6047977838,-2.1436636861 H,0,4.2380487103,-0.5392384572,-1.9767589218 H,0,-1.5776461536,3.8358024,1.7966473287 H,0,-0.828555549,4.6375653027,4.0114469563 H,0,1.1891902617,3.6369263258,5.0875947674 H,0,2.4654558817,1.8427893413,3.8836899634 H,0,-0.0652372845,4.6838154601,-0.1871627331 H,0,1.1031594346,6.1232294873,-1.8281336408 H,0,2.1959325479,5.1113184229,-3.8249293686 H,0,2,107679375,2,644624403,-4,1700504753 H,0,0.9229733938,1.2007723309,-2.5240451506 H,0,-2.1152125343,3.086133426,-2.137915078 H,0,-4.542274094,3.5237280213,-2.3226735355 H,0,-6.0801941928,2.8818818822,-0.4694816774 H,0,-5.159408356,1.7754709932,1.5696209114 H,0,-2.73707528,1.3154690309,1.7495629489 I,0,-1.4689809425,-0.8325530075,-2.8334526197 S,0,-1.4937798302,-1.4912589756,1.4331882016 N,0,-4.0218952086,-2.1036364859,1.9630865526 N,0,-3.5610194231,-1.4842258839,-0.242476908 C,0,-3.1178064019,-1.7064504874,1.0358395186 C,0,-5.2776223383,-2.2474329404,1.6113771194 C,0,-5.7727944148,-2.0154986679,0.3089537355 C,0,-4.8374091721,-1.6242770676,-0.6168952922 H,0,-2.8575141793,-1.2044557232,-0.9668563302 H,0,-5.966767075,-2.570842301,2.4026324848 H,0,-6.8232478368,-2.1425129337,0.051288385 H,0,-5.0482701983,-1.4118024932,-1.6685651302 Sum of electronic and zero-point Energies= -4742.454595 Sum of electronic and thermal Energies= -4742.410446 Sum of electronic and thermal Enthalpies= -4742.409502Sum of electronic and thermal Free Energies= -4742.539128

 $[CuI(DPEphos)(pymtH)], 6 (T_1)$

Charge = 0 Multiplicity = 3Cu,0,-0.3112828948,-0.6450186502,-0.5525955544 P,0,-0.6877929441,1.6359050386,-0.1496145611 P,0,2.0138935898,-1.4135900747,-0.3429913046 O,0,1.6826289991,0.7990641881,1.399009974 C,0,2.3710795714,-2.2941291525,1.222851728 C,0,1.5295698247,-3.3568536065,1.5776909977 C,0,1.7667936381,-4.0807800691,2.7438373667 C,0,2.8362984343,-3.7432979963,3.5721802511 C,0,3.6714060587,-2.6807057268,3.229380301 C,0,3.441814254,-1.9584817957,2.0592204688

C,0,2.8099041992,-2.4758180204,-1.6073665025 C,0,3.898960672,-3.3053454929,-1.3033728976 C,0,4.4900512009,-4.0794679254,-2.2992037228 C,0,3.9996592247,-4.0361060968,-3.6049808028 C,0,2.9120698399,-3.2205531213,-3.9109189303 C,0,2.3144386208,-2.4460474438,-2.9170121153 C,0,3.1023292653,0.0601377448,-0.2967380609 C,0,2.7322945028,1.094711504,0.5803286183 C,0,3.4110289752,2.3102676069,0.5962551361 C,0,4.4866313944,2.4953916761,-0.2718124833 C,0,4.8810512916,1.4800519038,-1.1399252387 C,0,4.1870697741,0.2701576837,-1.1520974463 C,0,-0.1936462164,2.2650794806,1.5035317408 C,0,-0.9264029609,3.2119285553,2.229286761 C,0,-0.4953473052,3.6383876501,3.4841454931 C,0,0.6708009336,3.1146847402,4.0390038627 C,0,1.4141162926,2.1711311031,3.3341164215 C,0,0.9862699668,1.7653705559,2.0736750232 C,0,0.246957448,2.7397525869,-1.2822194977 C.0.0.3331292285.4.115966481,-1.0240778013 C,0,1.0516021735,4.9454452602,-1.8797523438 C,0,1.6955405626,4.4096870316,-2.9966933978 C,0,1.6154740528,3.0439745779,-3.2558399696 C.0.0.8942102923.2.2089358177.-2.4022193779 C,0,-2.4326291538,2.1207514836,-0.3390343355 C,0,-2.8715891569,2.7397286441,-1.5165388868 C,0,-4.2237983877,3.0268804496,-1.6914604517 C,0,-5.1463370314,2.6922991147,-0.7018754108 C,0,-4.71561986,2.0634919186,0.4661819346 C,0,-3.3660003733,1.7729361958,0.6490944136 H,0,0.6753027846,-3.6115410643,0.9454024556 H,0,1.1020294133,-4.905137956,3.0123468328 H,0,3.0160767947,-4.3067389258,4.4911274116 H,0,4.5097636565,-2.4111793458,3.8767730833 H,0,4.1029977284,-1.1297460619,1.7931567669 H,0,4.2819864249,-3.3511290424,-0.2808541865 H,0,5.3366778452,-4.7248879297,-2.0521380178 H,0,4.4622085006,-4.6483324363,-4.3833441659 H,0,2.5120330004,-3.1932685068,-4.9273865323 H,0,1.4408226909,-1.8330783094,-3.1572253081 H,0,3.0952014695,3.1050771805,1.2739745141 H,0,5.0189902985,3.4495206147,-0.2652878458 H,0,5.7258056439,1.6295679248,-1.8155620167 H,0,4.483149453,-0.5227167167,-1.8428164437 H,0,-1.8534651752,3.611084712,1.8123661493 H,0,-1.0833544767,4.3754412469,4.0353605297 H,0,1.0006996417,3.4341360039,5.0302272114 H,0,2.3209288045,1.7289450363,3.7512100158 H,0,-0.1611767741,4.5429565421,-0.1479898515 H,0,1.1104387808,6.0169148172,-1.6729843851 H,0,2.2615626281,5.0622272017,-3.6662763865 H,0,2.1167897581,2.6181079538,-4.1280144692 H,0,0.8208897335,1.1398083033,-2.6148414229 H,0,-2.1567406891,2.9962504742,-2.3012776938

H,0,-4.5565903658,3.5104136229,-2.6129884254

Supplementary Material (ESI) for Dalton Transactions

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 H,0,-6.2068654904,2.9137704397,-0.8448780879 H,0,-5.4315409354,1.7768262391,1.2396506827 H,0,-3.0490459503,1.2652083194,1.5637614889 I,0,-1.312737773,-0.9493057218,-2.9224319831 S,0,-1.1931602745,-1.2148380242,1.4628780498 N,0,-3.6806730701,-1.2540179089,2.3394534567 N,0,-3.4435799315,-1.5796840459,0.0246576866 C,0,-2.9431269117,-1.3433253537,1.2843895092 C,0,-5.0501394278,-1.4162105042,2.2044717996 C,0,-5.62990876,-1.5953963768,0.9432202476 C,0,-4.8232343946,-1.6614584201,-0.1711322395 H,0,-2.8119882631,-1.5934888394,-0.7751488758 H,0,-5.6420344163,-1.3696574495,3.1200282901 H,0,-6.7136055946,-1.6766457291,0.8315498894 H,0,-5.166807374,-1.7828217839,-1.1967091322 Sum of electronic and zero-point Energies= -4742.383266 Sum of electronic and thermal Energies= -4742.338655 Sum of electronic and thermal Enthalpies= -4742.337710 Sum of electronic and thermal Free Energies= -4742.468539

[CuCl(DPEphos)(pymtH)], 7 (S₀)

[CuCl(DPEphos)(pymtH)], 7 (T₁)

Charg	e = 0 Multiplicity = 3
Cu	-0.22705 -0.7153 -0.39378
Cl	-1.0284 -1.08227 -2.60176
S	-1.4871 -1.49053 1.35473
Р	-0.68067 1.57362 -0.06884
Р	2.10166 -1.36924 -0.23059
0	1.75559 0.8741 1.48933
Ν	-4.12483 -1.79926 1.76783
Ν	-3.48233 -1.73972 -0.50173
Н	-2.73261 -1.64198 -1.17998
С	-3.22028 -1.68888 0.8488
С	-5.46591 -2.00822 1.37967
С	-5.78347 -2.01269 0.01524
Н	-6.81554 -2.12714 -0.29483
С	-4.81474 -1.86677 -0.95284
С	-6.44921 -2.191 2.48211
Η	-6.43836 -1.3405 3.17378
Η	-6.2188 -3.07998 3.081
Η	-7.46264 -2.30088 2.08994
С	-5.02309 -1.83125 -2.42495
Н	-4.68613 -0.88215 -2.85791
Н	-6.07979 -1.96035 -2.661
Η	-4.45899 -2.62247 -2.9327
С	2.53851 -2.27103 1.34366
С	1.6885 -3.29307 1.76839
Η	0.783 -3.51361 1.21651
С	1.99061 -4.01951 2.91623
Η	1.32135 -4.80579 3.24289
С	3.1384 -3.72671 3.64795
Н	3.36905 -4.28922 4.5446
С	3.985 -2.70445 3.22826

Η 4.87831 -2.47013 С 3.68792 -1.97855 2.07695 Η 4.34942 -1.183 1.75574 С 2.86657 -2.43616 -1.55593 С 3.9889 -3.22902 -1.30432 Η 4.42367 -3.25682 -0.31262 С 4.54233 -3.99769 -2.3243 Η 5.41042 -4.61355 -2.12178 С 3.97728 -3.97983 -3.59779 Η 4.40617 -4.58258 -4.38945 С 2.85289 -3.19849 -3.84614 Η 2.39629 -3.19476 -4.82835 С 2.2934 -2.42776 -2.82913 Η 1.39215 -1.85639 -3.01777 С 0.12826 -0.20041 3.20641 С 1.15833 0.67602 2.85529 С 3.56743 2.34729 0.72662 1.40788 Η 3.27181 3.13378 С 4.66044 2.51192 -0.12122 Η 5.21983 3.43895 -0.09164 С 5.0309 1.49967 -0.99967 Η 5.87947 1.63201 -1.65859 С 4.30275 0.31144 -1.0374 Η 4.58107 -0.47456 -1.72791 С -0.178462.28574 1.57765 С -0.952043.2152 2.27305 Η -1.89458 3.54455 1.85581 С -0.53069 3.70504 3.50631 Η -1.14481 4.42252 4.03552 С 0.6661 3.26272 4.06246 Η 3.6282 0.98605 5.03024 С 1.44838 2.33546 3.38177 Η 2.36824 1.9533 3.8048 С 1.02663 1.86893 2.14481 С 0.2073 2.661 -1.29887С 0.63243 3.94616 -0.95634 Η 4.32438 0.04607 0.47613 С 1.25962 4.74714 -1.90604 Η 5.74354 -1.63444 1.58717 С 1.4609 4.27154 -3.19946 Η 1.95026 4.89646 -3.93687 С 1.03221 2.99274 -3.54162 Η 1.18293 2.61667 -4.54609 С 0.40796 2.18314 -2.59559 Η 0.06644 1.19066 -2.86833 С -2.470082.05045 -0.2359 С -2.91342.83222 -1.30223 Η -2.21135 3.20349 -2.03722 С -4.26854 3.12996 -1.42647 Η -4.60773.73358 -2.25955 С -5.18086 2.65068 -0.49159 Η 2.87661 -0.59641 -6.23507 С -4.7372 1.86974 0.57314 Η -5.440071.47561 1.29618 С 1.56673 0.70172 -3.38618

11 -5.05700 0.74587 1.52475	
Sum of electronic and zero-point Energies=	-4984.902080
Sum of electronic and thermal Energies=	-4984.854488
Sum of electronic and thermal Enthalpies=	-4984.853543
Sum of electronic and thermal Free Energies=	-4984.991069

П

 $[CuBr(DPEphos)(pymtH)], 8 (S_0)$

Charge = 0 Multiplicity = 1Cu,0,-0.2290773496,-0.6936279689,-0.3922973294 Br,0,-1.2684453785,-0.8984890199,-2.6752637327 S,0,-1.547369966,-1.6305742977,1.3516142339 P,0,-0.4935791174,1.632007388,-0.0772149188 P,0,1.969246896,-1.3837595363,-0.1817266481 O,0,1.8558497974,0.8620969047,1.6044622772 N,0,-4.094525624,-2.2724194585,1.6869264652 N,0,-3.5039858054,-1.5334741714,-0.4511871173 H,0,-2.7445444807,-1.2399238729,-1.1102109058 C,0,-3.1476286941,-1.8292250408,0.8374411295 C,0,-5.3403505536,-2.3981490127,1.2697031904 C,0,-5.7377724087,-2.0687614142,-0.0482694814 H,0,-6.773327491,-2.1627355032,-0.3749840664 C,0,-4.7645403123,-1.6244087338,-0.9174698918 C,0,-6.3371822062,-2.9334782009,2.2493767766 H,0,-5.9792515253,-2.7661096173,3.2728917162 H,0,-6.4481941445,-4.0211687997,2.1044262162 H,0,-7.3288958025,-2.4785354595,2.1137514837 C,0,-5.0037735048,-1.2117325934,-2.3281485111 H,0,-4.8948611788,-0.1184428331,-2.4138080409 H,0,-6.0110547773,-1.4983185259,-2.6539547184 H,0,-4.2479197364,-1.652743476,-2.9950925541 C,0,2.4292716972,-2.225811875,1.3837459275 C,0,1.5868379142,-3.2494906394,1.8358222214 H,0,0.6760810873,-3.4891191835,1.2801583983 C,0,1.892226422,-3.949767391,3.0006883931 H,0,1.2244207333,-4.7435192197,3.3441209643 C,0,3.0346604751,-3.6278674777,3.7325555279 H,0,3.2699254224,-4.1728474695,4.6502562911 C,0,3.8716770629,-2.6024364289,3.294320744 H,0,4.7662380088,-2.3425181773,3.866274619 C,0,3.5718643675,-1.9040425371,2.1252407104 H,0,4.2327429645,-1.1020569045,1.7858811121 C,0,2.7026378444,-2.4944978896,-1.4481178951 C,0,3.8748381286,-3.2285690268,-1.2161580475 H,0,4.3744676758,-3.1673510064,-0.2458909724 C,0,4.4019210375,-4.0444312378,-2.2142860928 H,0,5.314933445,-4.6141357093,-2.0231364928 C,0,3.7628531661,-4.1391712777,-3.4516930818 H,0,4.1761608314,-4.7829366837,-4.2325185713 C,0,2.5918867176,-3.4208499621,-3.6839060925 H,0,2.0780090575,-3.5006007526,-4.6451097857 C,0,2.0578382873,-2.6044296483,-2.686234555 H,0,1.1232886444,-2.0617103414,-2.8627183705 C,0,3.0708900191,0.0821542875,-0.2424386461 C,0,2.7925446185,1.1326583618,0.6492118414

C,0,3.4648524543,2.3498472278,0.5701322979 H,0,3.2218849112,3.1521587461,1.2692356674 C,0,4.4385322131,2.5267190165,-0.4116059434 H,0,4.9627454977,3.4829289492,-0.4794783344 C,0,4.7418598972,1.4961500832,-1.2977262831 H,0,5.5056753398,1.6362149834,-2.0655918921 C,0,4.0580750811,0.2834730324,-1.2115693232 H,0,4.2822524806,-0.5188652709,-1.9181777386 C,0,-0.0176555208,2.360838225,1.5486590592 C,0,-0.7586737826,3.3457759076,2.2160193603 H,0,-1.6634217062,3.7412107435,1.7484414942 C,0,-0.3756314752,3.8130595563,3.4717761484 H,0,-0.9725836744,4.5807170384,3.9695042831 C,0,0.7573066021,3.2917156364,4.094318549 H,0,1.0538398755,3.6430739347,5.0854246691 C,0,1.5110118724,2.3126510401,3.4527377417 H,0,2.3950563788,1.8723924178,3.918042048 C,0,1.1293397601,1.863940021,2.1902869749 C,0,0.327355521,2.7628729444,-1.2724384665 C,0,0.4720440717,4.138120658,-1.0430558889 H,0,0.0946138814,4.5822650641,-0.118570586 C,0,1.1044007055,4.9449218571,-1.9855380224 H,0,1.2144024378,6.0159699883,-1.7969748043 C,0,1.5978474888,4.3871326825,-3.1662679257 H,0,2.094923213,5.0218167787,-3.9045034432 C,0,1.4569605164,3.0211131374,-3.4003593411 H,0,1.8415103619,2.5780431682,-4.322184247 C,0,0.8282715763,2.2088392729,-2.4563283849 H,0,0.7056603626,1.1376995001,-2.6387965936 C,0,-2.267471705,2.0764097196,-0.2104068304 C,0,-2.7870108057,2.6970465152,-1.3526675806 H,0,-2.1147764757,3.0140447651,-2.1528422543 C,0,-4.1601364521,2.9117443419,-1.4766880274 H,0,-4.5492534287,3.4033162259,-2.372053057 C,0,-5.0303827214,2.5080123817,-0.4653139637 H,0,-6.1048119102,2.6845268335,-0.5610972457 C,0,-4.5209082775,1.8783263435,0.6719055573 H,0,-5.1944760921,1.5536074635,1.4692073501 C,0,-3.1518118174,1.6555747794,0.796344629 H,0,-2.7644489203,1.1409157238,1.6801666285 Sum of electronic and zero-point Energies= -7096.732119 Sum of electronic and thermal Energies= -7096.684480 Sum of electronic and thermal Enthalpies= -7096.683536 Sum of electronic and thermal Free Energies= -7096.820895

[CuBr(DPEphos)(pymtH)], 8 (T₁)

Charge = 0 Multiplicity = 3Cu,0,-0.2448134772,-0.7180006471,-0.626612276 Br,0,-1.0366349157,-0.9192784116,-2.8890874684 S,0,-1.2342412985,-1.3812925709,1.3023549496 P,0,-0.7027020332,1.5444752195,-0.201600015 P,0,2.0698783648,-1.4490226052,-0.343728602 O,0,1.6257772162,0.7234802006,1.4258740017 N,0,-3.7644893141,-1.6417354957,1.9750132794

This journal is (c) The Royal Society of Chemistry 2010 N,0,-3.372443549,-1.5554644603,-0.3384686131 H,0,-2.6867003677,-1.4804640604,-1.0903835082 C.0.-2.9631294558,-1.533937386,0.972902021 C,0,-5.1238161741,-1.8169572223,1.7350794181 C,0,-5.6037408176,-1.7569102043,0.4172459161 H,0,-6.6769505108,-1.8210770352,0.2187383334 C,0,-4.7402495314,-1.6024257387,-0.6483690599 C,0,-5.9877465743,-2.0235746706,2.9324473414 H,0,-5.8743876249,-1.1971373058,3.6568198756 H,0,-5.7107130998,-2.9454139997,3.4754068018 H.0,-7.0497463511,-2.0990271808,2.656621348 C,0,-5.1029262281,-1.4647835661,-2.0818091922 H,0,-4.7796339377,-0.4883485511,-2.4870183347 H,0,-6.1895094918,-1.5530544774,-2.2159257847 H,0,-4.6133216087,-2.2365578322,-2.7032028027 C,0,2.4231886971,-2.3478057974,1.212023027 C,0,1.6012612851,-3.435880518,1.5344288424 H,0,0.764571378,-3.7003116022,0.8828548647 C,0,1.834520792,-4.1721034005,2.6936745873 H.0,1.1849774865,-5.016201291,2.9369847669 C,0,2.8804059346,-3.822667536,3.5469589092 H,0,3.0570600629,-4.3965052375,4.4600707857 C,0,3.6955153823,-2.7349206492,3.2364861391 H.0.4.5150262839,-2.4555944519,3.9035774588 C.0.3.4695969101,-1.9994789282,2.0738209681 H,0,4.1136337829,-1.1492208624,1.8345894305 C,0,2.9048609256,-2.4662716711,-1.6178341026 C,0,4.0477889281,-3.2269562414,-1.3318714462 H,0,4.4539712632,-3.2423765737,-0.3172214452 C,0,4.6620609797,-3.9719983838,-2.335500073 H,0,5.5511250643,-4.5640044147,-2.1042116169 C,0,4.1399701328,-3.9679511933,-3.6299135513 H,0,4.6212570265,-4.5570582308,-4.4147840199 C,0,2.9979735288,-3.222716107,-3.9163625195 H,0,2.575033269,-3.2286159422,-4.9238955475 C,0,2.3761014001,-2.476860748,-2.9148981195 H,0,1.4612637642,-1.9178910925,-3.1361102205 C,0,3.1079717635,0.0565929849,-0.2499914689 C,0,2.6842756423,1.0636955676,0.6349477771 C,0,3.3222492147,2.3001776573,0.684917184 H,0,2.9667251962,3.0723670555,1.3691129302 C,0,4.4076725258,2.5364137573,-0.1582078416 H,0,4.9071853141,3.5075859607,-0.1250278196 C,0,4.8522467188,1.5504490872,-1.0357513947 H,0,5.7029428625,1.7405015976,-1.6934971525 C,0,4.200469612,0.3181401917,-1.0808618298 H,0,4.5354355708,-0.4522411708,-1.7792547919 C,0,-0.2837422299,2.1543460022,1.4778391406 C,0,-1.0630427483,3.0732516476,2.1913443611 H,0,-1.9788659566,3.4650155426,1.7435144517 C,0,-0.6933361384,3.4803873424,3.4718975706 H,0,-1.3169016308,4.195686926,4.0126289504 C,0,0.4577580294,2.9647946323,4.0646551608 H,0,0.740227176,3.2687948096,5.0752080143 C,0,1.2472388587,2.0498525636,3.3724361859

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 H,0,2.1440689583,1.6151906863,3.8180510933 C,0,0.8807403901,1.6627619934,2.0868888183 C.0.0.2284497065,2.6933784796,-1.2913202737 C.0.0.3346832243,4.05497416,-0.9716003083 H,0,-0.137485322,4.4456378434,-0.0669760995 C,0,1.0462538114,4.9157518239,-1.8020348001 H,0,1.1214903085,5.9757462889,-1.5469428849 C,0,1.6621009078,4.4259238792,-2.9551105132 H,0,2.2229906924,5.1027818086,-3.6045997587 C,0,1.5605946611,3.0745563469,-3.2756801038 H,0,2.039683964,2.6849706264,-4.176930339 C,0,0.8474095804,2.2071955864,-2.4477525746 H,0,0.7526647057,1.1501221264,-2.7088544103 C,0,-2.4554337057,1.9707613161,-0.4465242395 C,0,-2.8751405367,2.5751581037,-1.6385065388 H,0,-2.1424554217,2.8625269163,-2.395534072 C,0,-4.2311007327,2.806487265,-1.8629907985 H,0,-4.549718588,3.2803705791,-2.7945737395 C,0,-5.1748715328,2.431638712,-0.9081017246 H.0.-6.2375982259,2.6106405113,-1.0891760311 C,0,-4.7619999556,1.8172014251,0.2742976368 H,0,-5.4947246247,1.5001537846,1.0193463424 C,0,-3.4092578306,1.5814220577,0.505513737 H,0,-3.1027777118,1.0797343984,1.4270374082 Sum of electronic and zero-point Energies= -7096.652298 Sum of electronic and thermal Energies= -7096.604343 Sum of electronic and thermal Enthalpies= -7096.603399 Sum of electronic and thermal Free Energies= -7096.740987

 $[CuI(DPEphos)(pymtH)], 9 (S_0)$

Charge = 0 Multiplicity = 1Cu,0,-0.0836902128,-0.5912914532,-0.2210817131 I,0,-1.083020632,-0.8371274746,-2.7139057383 S,0,-1.3149032608,-1.6763092135,1.5048579351 P,0,-0.5671130351,1.6939237143,0.1749199032 P,0,2.1676712054,-1.1073489866,0.0874566938 O,0,1.748559393,1.0427707224,1.9459330256 N,0,-3.7672167372,-2.5877667296,1.8961678796 N.0.-3.3267527192.-1.7431220441.-0.2393309469 H,0,-2.6225192645,-1.3600006831,-0.904961421 C,0,-2.898878703,-2.0280890175,1.0297742239 C,0,-5.006991869,-2.8278513587,1.5163621319 C.0.-5.479986713.-2.5095514748.0.2192457696 H.0.-6.5114430757.-2.7012144476.-0.0765481321 C,0,-4.5883399279,-1.9520569735,-0.6697452761 C,0,-5.9205697323,-3.4708608042,2.5120753469 H,0,-5.4300522682,-3.5127372807,3.4917365692 H,0,-6.1659792501,-4.4968758996,2.1928212519 H,0,-6.8703587575,-2.9203970932,2.5923116322 C,0,-4.9178702625,-1.542753415,-2.0625483556 H,0,-4.8751916096,-0.4447777348,-2.1463309886 H,0,-5.9213172029,-1.8862600998,-2.3417501009

This journal is (c) The Royal Society of Chemistry 2010 H,0,-4.1737757309,-1.9382865886,-2.7706332003 C,0,2.6038743191,-1.9613090079,1.653601768 C,0,1.8580898361,-3.0950443637,2.0006534226 H,0,1.0267274134,-3.4142421838,1.366475168 C,0,2.1583883261,-3.8077138369,3.1593538934 H,0,1.5661905281,-4.6881653242,3.4201934089 C,0,3.1980741017,-3.3900106731,3.9892847041 H,0,3.4284720281,-3.9456405028,4.9018244418 C,0,3.9380981877,-2.2566017274,3.6550051645 H,0,4.7522525318,-1.9222321988,4.3032949366 C,0,3.6437337295,-1.5450019069,2.4926394975 H,0,4.2298795998,-0.6593356364,2.2342423112 C,0,3.0953534338,-2.0965294389,-1.1532056592 C,0,4.2981008505,-2.7476285685,-0.8423121158 H,0,4.7006785807,-2.6956283419,0.1724425206 C,0,4.9797229385,-3.4689754517,-1.8194694227 H,0,5.9151872971,-3.9743304699,-1.5660680125 C,0,4.4673714258,-3.5513383307,-3.1152988038 H,0,5.0020034381,-4.1213884598,-3.8795901684 C,0,3.2682432425,-2.9147480324,-3.4278016037 H,0,2.8523004665,-2.9852219825,-4.4359237453 C,0,2.5805276805,-2.1937185791,-2.4512617696 H,0,1.6257689533,-1.7174629388,-2.6945416638 C,0,3.126605292,0.4561660814,0.1439663167 C.0.2.7019156413,1.4396668267,1.0538791884 C,0,3.2539059975,2.7185462803,1.0517364204 H,0,2.8983827165,3.466201427,1.7630886992 C,0,4.2524168472,3.026301407,0.129330003 H,0,4.6815889217,4.031018084,0.120593055 C,0,4.7014145969,2.0639890133,-0.7717642312 H,0,5.4863729193,2.306254438,-1.4913939379 C,0,4.1387103226,0.7878821092,-0.76168749 H,0,4.4783305687,0.0377681997,-1.47958543 C,0,-0.2383427939,2.3828522698,1.8556511614 C,0,-1.0896900729,3.2746084727,2.522406931 H,0,-1.9993155306,3.6184944215,2.0246779042 C,0,-0.8096128948,3.7126526842,3.8152877901 H,0,-1.4912978489,4.4074023168,4.3113403144 C,0,0.3288569164,3.2544016259,4.4762188517 H,0,0.5451696182,3.5822264828,5.4957488866 C,0,1.1915611538,2.3691726172,3.8357525736 H,0,2.0846867627,1.9802388469,4.3286379675 C,0,0.9114609563,1.9510376253,2.5368222929 C,0,0.23109488,2.9426980871,-0.9133148839 C,0.0.1448103607,4.3217260739,-0.6759526524 H,0,-0.4213679735,4.6961115981,0.1807336025 C,0,0.7856680099,5.2216980347,-1.5232421141 H,0,0.7137121106,6.2951670147,-1.3302522785 C,0,1.520231092,4.7535729921,-2.6145316715 H,0,2.0241367327,5.4614714544,-3.2777590453 C,0,1.6108722282,3.3847884053,-2.8553667471 H,0,2.1847577097,3.0118209189,-3.7069622878 C,0,0.970375249,2.4810429174,-2.0075129929 H,0,1.0311385989,1.4059536853,-2.1949260922 C,0,-2.3611873858,2.0082628143,-0.0320887195

Supplementary Material (ESI) for Dalton Transactions

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 201 C,0,-2.872308206,2.6302291967,-1.1774978798
H,0,-2.1899387508,3.0238897934,-1.9338360489
C,0,-4.2503183631,2.7486729858,-1.3612923544
H,0,-4.6328350073,3.2410362572,-2.2589370127
C,0,-5.1338000713,2.2458789988,-0.4076775172
H,0,-6.2128084886,2.347829489,-0.5496963499
C,0,-4.6321230972,1.6128956778,0.7313026708
H,0,-5.3161019923,1.2115682538,1.4836974207
C,0,-3.2573951734,1.4860876993,0.9149334086
H,0,-2.8737340953,0.9720887143,1.8009435157
Sum of electronic and zero-point Energies= -4820.895863
Sum of electronic and thermal Energies= -4820.848161
Sum of electronic and thermal Enthalpies= -4820.847217
Sum of electronic and thermal Free Energies= -4820.984544

[CuI(DPEphos)(pymtH)], 9 (T₁)

2010

Charge = 0 Multiplicity = 3Cu -0.00104 -0.57503 -0.4498 Ι -0.51559 -0.68392 -2.98483 S -0.94968 -1.68606 1.28897 P -1.00609 1.45719 0.15682 Р 2.3823 -0.83368 0.09327 0 1.20099 0.88417 2.0286 Ν -3.42101 -2.45772 1.7711 Ν -2.90805 -2.16434 -0.5012 Η -2.20297 -1.90663 -1.18994 С -2.59349 -2.13893 0.83661 С -4.70038 -2.88012 1.42301 С -5.09541 -2.84695 0.07685 Η -6.11774 -3.11463 -0.20337 С -4.21396 -2.46646 -0.91566 С -5.58079 -3.31948 2.5432 Η -5.67425 -2.53208 3.31225 Η -5.16429 -4.20315 3.05994 Η -6.58895 -3.57848 2.18797 С -4.50361 -2.33208 -2.36576 Η -4.35657 -1.29252 -2.71189 Η -5.54 -2.62556 -2.58053 Η -3.83241 -2.96214 -2.97754 С 2.70002 -1.90893 1.54115 С 2.13868 -3.19292 1.52829 Η 1.51478 -3.50783 0.68801 С 2.36138 -4.06706 2.58933 Η 1.91657 -5.06471 2.56988 С 3.13355 -3.66414 3.67819 Η 3.30041 -4.34802 4.51407 С 3.68626 -2.38446 3.70148 4.29059 -2.06345 4.55372 Η С 3.47204 -1.50899 2.6376 Η 3.91301 -0.50912 2.65936 С 3.61497 -1.41857 -1.1313 С 4.81935 -2.02249 -0.74189 Η 5.03417 -2.17817 0.31831 С 5.74083 -2.43253 -1.7026

Н	6.67563 -2.9043 -1.38961
С	5.46902 -2.24758 -3.05882
Η	6.19156 -2.57481 -3.8108
С	4.26985 -1.6567 -3.45195
Н	4 0425 -1 52369 -4 51241
C	3 34255 -1 24702 -2 49422
н	2 38919 _0 81438 _2 81084
$\hat{\Gamma}$	2.02272 0.00705 0.58487
C	3.03373 0.00703 0.30407
C	2.2089/ 1.3493 1.30201
C	2.6065 2.85911 1.83349
Н	1.9895 3.42216 2.53557
С	3.73242 3.43745 1.24827
Η	3.99682 4.46639 1.50365
С	4.51288 2.71737 0.34707
Η	5.39468 3.17422 -0.10696
С	4.15934 1.40935 0.01665
H	4 75813 0 8462 -0 70272
C	-0.96584 1.8752 1.94421
C	2 01816 2 40708 2 62614
с u	-2.01010 2.49790 $2.020142.02027$ 2.76226 2.0257
П	-2.92927 2.70320 2.00337
C	-1.92449 2.76627 3.99054
H	-2.75808 3.24979 4.50453
С	-0.77981 2.40379 4.69788
Н	-0.71175 2.59605 5.77109
С	0.27869 1.78365 4.03865
Н	1.18005 1.47203 4.56991
С	0.18457 1.53771 2.67231
С	-0.21651 2.92548 -0.61364
С	-0.53466 4.22012 -0.17757
H	-1 2635 4 36661 0 62336
C	0.07794 5.32519 -0.76076
ч	0.17810 6.33071 0.41784
Γ	-0.17819 0.33071 $-0.417841 01721 5 14002 1 77871$
	1.01/21 5.14902 -1.7871
Н	1.49929 6.01817 -2.23333
C	1.33811 3.86576 -2.21355
Н	2.07176 3.72063 -3.00985
С	0.72443 2.75531 -1.63356
Η	0.96488 1.74913 -1.98473
С	-2.7613 1.55377 -0.31829
С	-3.13964 2.22501 -1.4883
Н	-2.39291 2.75811 -2.08049
C	-4 46977 2 20806 -1 90338
н	-4 75573 2 73517 -2 81672
$\hat{\Gamma}$	5 42774 1 51816 1 16206
	-5.42774 1.51810 -1.10200
п	-0.40731 1.30437 $-1.471715 05200 0 02602 0 00270$
	-3.03308 0.83093 -0.003/9
H	-5./9136 U.2//48 U.5/453
C	-3./251 0.84/23 0.41625
Н	-3.44517 0.29324 1.31619
Sum	of electronic and zero-point Energies=
Sum	of electronic and thermal Energies=

Sum of electronic and thermal Enthalpies=

Sum of electronic and thermal Free Energies=

-4820.817070 -4820.768995 -4820.768051 -4820.90628