SUPPORTING INFORMATION

Syntheses, crystal structures and magnetic properties of a novel family of penta-manganese complexes derived from an assembly system containing polydentate hydroxy-rich Schiff-base ligands

Pei-Pei Yang, Xue-Yan Song, Rui-Na Liu, Li-Cun Li* and Dai-Zheng Liao

Department of Chemistry, Nankai University, 94 Weijing Road, Tianjin 300071, PR China

*Author to whom correspondance should be addressed. Email: <u>llicun@nankai.edu.cn</u>

Mn(1)-O(5)	2.233(5)	Mn(2)-O(10)	1.979(5)	Mn(4)-O(2)	1.912(5)
Mn(1)-O(6)	2.145(5)	Mn(3)-O(9)	2.195(5)	Mn(4)-N(1)	1.999(6)
Mn(1)-O(15)	1.869(5)	Mn(3)-O(5)	2.284(5)	Mn(5)-O(13)	2.149(6)
Mn(1)-O(16)	1.917(5)	Mn(3)-O(4)	1.875(5)	Mn(5)-O(12)	2.256(6)
Mn(1)-O(14)	1.955(5)	Mn(3)-O(3)	1.902(5)	Mn(5)-O(15)	1.900(5)
Mn(1)-N(3)	2.059(7)	Mn(3)-O(16)	1.934(5)	Mn(5)-O(7)	1.904(5)
Mn(2)-O(2)	2.132(5)	Mn(3)-N(2)	1.983(7)	Mn(5)-O(8)	1.910(5)
Mn(2)-O(4)	2.188(5)	Mn(4)-O(8)	2.207(5)	Mn(5)-N(4)	1.999(6)
Mn(2)-O(15)	1.895(5)	Mn(4)-O(17)	2.319(6)	Mn(1)Mn(2)	2.843(2)
Mn(2)-O(16)	1.920(5)	Mn(4)-O(1)	1.904(6)	Mn(1)Mn(3)	3.1589(16)
Mn(2)-O(11)	1.955(5)	Mn(4)-O(6)	1.905(5)	Mn(2)Mn(3)	2.9333(16)
O(15)-Mn(1)-O(16)	83.4(2)	O(2)-Mn(2)-O(4)	170.26(19)	N(1)-Mn(4)-O(17)	88.8(2)
O(15)-Mn(1)-O(14)	98.5(2)	O(4)-Mn(3)-O(3)	173.5(2)	O(8)-Mn(4)-O(17)	177.9(2)
O(16)-Mn(1)-O(14)	171.7(2)	O(4)-Mn(3)-O(16)	86.7(2)	O(15)-Mn(5)-O(7)	90.9(2)
O(15)-Mn(1)-N(3)	169.8(2)	O(3)-Mn(3)-O(16)	99.5(2)	O(15)-Mn(5)-O(8)	97.5(2)
O(16)-Mn(1)-N(3)	91.9(2)	O(4)-Mn(3)-N(2)	82.2(2)	O(7)-Mn(5)-O(8)	171.2(2)
O(14)-Mn(1)-N(3)	87.5(2)	O(3)-Mn(3)-N(2)	91.8(3)	O(15)-Mn(5)-N(4)	178.1(3)
O(15)-Mn(1)-O(6)	91.4(2)	O(16)-Mn(3)-N(2)	168. 5(2)	O(7)-Mn(5)-N(4)	88.3(2)
O(16)-Mn(1)-O(6)	94.2(2)	O(4)-Mn(3)-O(9)	92.2(2)	O(8)-Mn(5)-N(4)	83.3(2)
O(14)-Mn(1)-O(6)	93.9(2)	O(3)-Mn(3)-O(9)	90.2(2)	O(15)-Mn(5)-O(13)	91.5(2)
N(3)-Mn(1)-O(6)	80.0(2)	O(16)-Mn(3)-O(9)	86.8(2)	O(7)-Mn(5)-O(13)	89.8(2)
O(15)-Mn(1)-O(5)	104.3(2)	N(2)-Mn(3)-O(9)	91.0(2)	O(8)-Mn(5)-O(13)	92.8(2)
O(16)-Mn(1)-O(5)	80.9(2)	O(4)-Mn(3)-O(5)	91.0(2)	N(4)-Mn(5)-O(13)	90.2(2)
O(14)-Mn(1)-O(5)	90.7(2)	O(3)-Mn(3)-O(5)	88.1(2)	O(15)-Mn(5)-O(12)	95.0(2)
N(3)-Mn(1)-O(5)	83.7(2)	O(16)-Mn(3)-O(5)	79.3(2)	O(7)-Mn(5)-O(12)	87.3(2)
O(6)-Mn(1)-O(5)	162.79(19)	N(2)-Mn(3)-O(5)	103.4(2)	O(8)-Mn(5)-O(12)	89.1(2)
O(15)-Mn(2)-O(16)	82.6(2)	O(9)-Mn(3)-O(5)	165.5(2)	N(4)-Mn(5)-O(12)	83.2(2)
O(15)-Mn(2)-O(11)	99.1(2)	O(1)-Mn(4)-O(6)	93.8(2)	O(13)-Mn(5)-O(12)	172.9(2)
O(16)-Mn(2)-O(11)	169.4(2)	O(1)-Mn(4)-O(2)	170.0(2)	Mn(1)-O(5)-Mn(3)	88.75(19)
O(15)-Mn(2)-O(10)	175.0(2)	O(6)-Mn(4)-O(2)	94.5(2)	Mn(3)-O(4)-Mn(2)	92.1(2)
O(16)-Mn(2)-O(10)	92.7(2)	O(1)-Mn(4)-N(1)	89.0(2)	Mn(4)-O(2)-Mn(2)	130.7(2)
O(11)-Mn(2)-O(10)	85.9(2)	O(6)-Mn(4)-N(1)	176.0(2)	Mn(4)-O(6)-Mn(1)	127.0(3)
O(15)-Mn(2)-O(2)	88.5(2)	O(2)-Mn(4)-N(1)	82.5(2)	Mn(5)-O(8)-Mn(4)	123.8(2)
O(16)-Mn(2)-O(2)	91.9(2)	O(1)-Mn(4)-O(8)	92.0(2)	Mn(1)-O(15)-Mn(2)	98.1(2)
O(11)-Mn(2)-O(2)	98.6(2)	O(6)-Mn(4)-O(8)	89.5(2)	Mn(1)-O(15)-Mn(5)	129.7(3)
O(10)-Mn(2)-O(2)	89.8(2)	O(2)-Mn(4)-O(8)	93.7(2)	Mn(2)-O(15)-Mn(5)	125.4(3)
O(15)-Mn(2)-O(4)	92.9(2)	N(1)-Mn(4)-O(8)	93.3(2)	Mn(1)-O(16)-Mn(2)	95.6(2)
O(16)-Mn(2)-O(4)	78.73(19)	O(1)-Mn(4)-O(17)	87.9(3)	Mn(1)-O(16)-Mn(3)	110.2(2)
O(11)-Mn(2)-O(4)	90.7(2)	O(6)-Mn(4)-O(17)	88.3(2)	Mn(2)-O(16)-Mn(3)	99.1(2)
O(10)-Mn(2)-O(4)	88.0(2)	O(2)-Mn(4)-O(17)	86.7(2)		

Table S1. Selected Bond Lengths (Å) and Bond Angles (deg) for Complex 1.

Mn(1)-O(16)	1.896(6)	Mn(2)-O(3)	2.329(6)	Mn(4)-O(8)	2.174(5)
Mn(1)-O(15)	1.922(5)	Mn(3)-O(16)	1.890(5)	Mn(4)-O(17)	2.324(6)
Mn(1)-O(10)	1.937(5)	Mn(3)-O(15)	1.910(6)	Mn(5)-O(7)	1.900(6)
Mn(1)-O(11)	1.978(6)	Mn(3)-O(13)	1.942(6)	Mn(5)-O(8)	1.912(6)
Mn(1)-O(6)	2.141(6)	Mn(3)-N(2)	2.058(6)	Mn(5)-O(16)	1.917(5)
Mn(1)-O(2)	2.177(6)	Mn(3)-O(4)	2.168(5)	Mn(5)-N(4)	2.026(7)
Mn(2)-O(2)	1.866(5)	Mn(3)-O(3)	2.197(5)	Mn(5)-O(14)	2.182(7)
Mn(2)-O(1)	1.899(5)	Mn(4)-O(4)	1.887(5)	Mn(5)-O(9)	2.243(6)
Mn(2)-O(15)	1.945(5)	Mn(4)-O(5)	1.914(6)	$Mn(1) \cdots Mn(2)$	2.9682(19)
Mn(2)-N(1)	1.980(7)	Mn(4)-O(6)	1.918(6)	$Mn(2)\cdots Mn(3)$	3.150(2)
Mn(2)-O(12)	2.199(6)	Mn(4)-N(3)	1.990(7)	$Mn(1)\cdots Mn(3)$	2.8237(19)
O(16)-Mn(1)-O(15)	84.0(2)	O(12)-Mn(2)-O(3)	165.2(2)	N(3)-Mn(4)-O(17)	89.2(3)
O(16)-Mn(1)-O(10)	97.8(2)	O(16)-Mn(3)-O(15)	84.5(2)	O(8)-Mn(4)-O(17)	179.7(3)
O(15)-Mn(1)-O(10)	168.2(2)	O(16)-Mn(3)-O(13)	98.9(2)	O(7)-Mn(5)-O(8)	170.6(2)
O(16)-Mn(1)-O(11)	175.4(2)	O(15)-Mn(3)-O(13)	173.5(2)	O(7)-Mn(5)-O(16)	92.1(2)
O(15)-Mn(1)-O(11)	91.9(2)	O(16)-Mn(3)-N(2)	170.4(2)	O(8)-Mn(5)-O(16)	97.3(2)
O(10)-Mn(1)-O(11)	86.6(2)	O(15)-Mn(3)-N(2)	93.4(3)	O(7)-Mn(5)-N(4)	88.4(3)
O(16)-Mn(1)-O(6)	89.9(2)	O(13)-Mn(3)-N(2)	84.2(3)	O(8)-Mn(5)-N(4)	82.3(3)
O(15)-Mn(1)-O(6)	92.1(2)	O(16)-Mn(3)-O(4)	90.6(2)	O(16)-Mn(5)-N(4)	178.9(3)
O(10)-Mn(1)-O(6)	99.6(2)	O(15)-Mn(3)-O(4)	92.5(2)	O(7)-Mn(5)-O(14)	91.5(3)
O(11)-Mn(1)-O(6)	88.1(2)	O(13)-Mn(3)-O(4)	93.0(2)	O(8)-Mn(5)-O(14)	89.2(3)
O(16)-Mn(1)-O(2)	94.6(2)	N(2)-Mn(3)-O(4)	80.1(2)	O(16)-Mn(5)-O(14)	92.4(2)
O(15)-Mn(1)-O(2)	77.8(2)	O(16)-Mn(3)-O(3)	105.0(2)	N(4)-Mn(5)-O(14)	86.6(3)
O(10)-Mn(1)-O(2)	90.5(2)	O(15)-Mn(3)-O(3)	82.9(2)	O(7)-Mn(5)-O(9)	85.6(2)
O(11)-Mn(1)-O(2)	86.7(2)	O(13)-Mn(3)-O(3)	90.8(2)	O(8)-Mn(5)-O(9)	92.6(2)
O(6)-Mn(1)-O(2)	168.4(2)	N(2)-Mn(3)-O(3)	83.9(2)	O(16)-Mn(5)-O(9)	94.0(2)
O(2)-Mn(2)-O(1)	173.5(2)	O(4)-Mn(3)-O(3)	163.1(2)	N(4)-Mn(5)-O(9)	87.0(3)
O(2)-Mn(2)-O(15)	85.2(2)	O(4)-Mn(4)-O(5)	94.1(3)	O(14)-Mn(5)-O(9)	173.1(2)
O(1)-Mn(2)-O(15)	101.3(2)	O(4)-Mn(4)-O(6)	94.3(3)	Mn(2)-O(2)-Mn(1)	94.1(2)
O(2)-Mn(2)-N(1)	82.8(3)	O(5)-Mn(4)-O(6)	169.6(3)	Mn(3)-O(3)-Mn(2)	88.1(2)
O(1)-Mn(2)-N(1)	90.7(3)	O(4)-Mn(4)-N(3)	176.3(3)	Mn(4)-O(4)-Mn(3)	127.8(3)
O(15)-Mn(2)-N(1)	167.6(3)	O(5)-Mn(4)-N(3)	88.8(3)	Mn(4)-O(6)-Mn(1)	129.0(3)
O(2)-Mn(2)-O(12)	90.0(2)	O(6)-Mn(4)-N(3)	82.6(3)	Mn(5)-O(8)-Mn(4)	125.2(3)
O(1)-Mn(2)-O(12)	90.7(2)	O(4)-Mn(4)-O(8)	91.6(2)	Mn(3)-O(15)-Mn(1)	94.9(2)
O(15)-Mn(2)-O(12)	86.5(2)	O(5)-Mn(4)-O(8)	92.2(2)	Mn(3)-O(15)-Mn(2)	109.6(3)
N(1)-Mn(2)-O(12)	96.7(3)	O(6)-Mn(4)-O(8)	93.7(2)	Mn(1)-O(15)-Mn(2)	100.3(2)
O(2)-Mn(2)-O(3)	90.7(2)	N(3)-Mn(4)-O(8)	90.6(3)	Mn(3)-O(16)-Mn(1)	96.5(2)
O(1)-Mn(2)-O(3)	90.4(2)	O(4)-Mn(4)-O(17)	88.5(2)	Mn(3)-O(16)-Mn(5)	129.2(3)
O(15)-Mn(2)-O(3)	78.8(2)	O(5)-Mn(4)-O(17)	88.1(2)	Mn(1)-O(16)-Mn(5)	126.8(3)
N(1)-Mn(2)-O(3)	98.1(3)	O(6)-Mn(4)-O(17)	86.0(2)		

Table S2. Selected Bond Lengths (Å) and Bond Angles (deg) for Complex 2.

Mn(1)-O(2)	1.854(6)	Mn(2)-O(14)	2.102(7)	Mn(4)-O(8)	1.944(6)
Mn(1)-O(1)	1.876(6)	Mn(2)-O(6)	2.400(7)	Mn(4)-N(3)	1.979(8)
Mn(1)-O(5)	1.929(6)	Mn(3)-O(16)	2.118(6)	Mn(4)-O(19)	2.090(6)
Mn(1)-N(1)	1.991(7)	Mn(3)-O(11)	2.141(6)	Mn(4)-O(9)	2.471(7)
Mn(1)-O(15)	2.189(7)	Mn(3)-O(17)	2.144(7)	Mn(5)-O(11)	1.851(6)
Mn(1)-O(13)	2.194(8)	Mn(3)-O(2)	2.145(6)	Mn(5)-O(10)	1.867(6)
Mn(2)-O(12)	1.833(6)	Mn(3)-O(12)	2.198(6)	Mn(5)-O(8)	1.933(6)
Mn(2)-O(4)	1.878(6)	Mn(3)-O(3)	2. 209(6)	Mn(5)-N(4)	1.960(8)
Mn(2)-O(5)	1.937(6)	Mn(4)-O(3)	1.830(6)	Mn(5)-O(20)	2.169(6)
Mn(2)-N(2)	1.989(8)	Mn(4)-O(7)	1.868(6)	Mn(5)-O(18)	2.286(7)
O(2)-Mn(1)-O(1)	173.7(3)	O(5)-Mn(2)-O(6)	73.3(2)	N(3)-Mn(4)-O(19)	96.6(3)
O(2)-Mn(1)-O(5)	91.2(3)	N(2)-Mn(2)-O(6)	81.4(3)	O(3)-Mn(4)-O(9)	87.9(3)
O(1)-Mn(1)-O(5)	94.5(3)	O(14)-Mn(2)-O(6)	166.4(3)	O(7)-Mn(4)-O(9)	100.9(3)
O(2)-Mn(1)-N(1)	83.6(3)	O(16)-Mn(3)-O(11)	141.3(3)	O(8)-Mn(4)-O(9)	71.7(2)
O(1)-Mn(1)-N(1)	91.0(3)	O(16)-Mn(3)-O(17)	82.9(3)	N(3)-Mn(4)-O(9)	74.8(3)
O(5)-Mn(1)-N(1)	171.9(3)	O(11)-Mn(3)-O(17)	92.7(2)	O(19)-Mn(4)-O(9)	162.0(2)
O(2)-Mn(1)-O(15)	94.3(3)	O(16)-Mn(3)-O(2)	90.5(2)	O(11)-Mn(5)-O(10)	173.9(3)
O(1)-Mn(1)-O(15)	88.4(3)	O(11)-Mn(3)-O(2)	115.9(2)	O(11)-Mn(5)-O(8)	90.3(3)
O(5)-Mn(1)-O(15)	87.9(3)	O(17)-Mn(3)-O(2)	139.0(2)	O(10)-Mn(5)-O(8)	95.8(3)
N(1)-Mn(1)-O(15)	86.3(3)	O(16)-Mn(3)-O(12)	141.0(2)	O(11)-Mn(5)-N(4)	83.3(3)
O(2)-Mn(1)-O(13)	89.8(3)	O(11)-Mn(3)-O(12)	74.9(2)	O(10)-Mn(5)-N(4)	90.6(3)
O(1)-Mn(1)-O(13)	87.6(3)	O(17)-Mn(3)-O(12)	80.9(3)	O(8)-Mn(5)-N(4)	171.5(3)
O(5)-Mn(1)-O(13)	91.4(3)	O(2)-Mn(3)-O(12)	79.3(2)	O(11)-Mn(5)-O(20)	92.8(3)
N(1)-Mn(1)-O(13)	94.8(3)	O(16)-Mn(3)-O(3)	82.2(2)	O(10)-Mn(5)-O(20)	87.0(3)
O(15)-Mn(1)-O(13)	175.8(3)	O(11)-Mn(3)-O(3)	78.7(2)	O(8)-Mn(5)-O(20)	93.0(2)
O(12)-Mn(2)-O(4)	91.4(3)	O(17)-Mn(3)-O(3)	143.1(3)	N(4)-Mn(5)-O(20)	92.9(3)
O(12)-Mn(2)-O(5)	96.2(3)	O(2)-Mn(3)-O(3)	74.6(2)	O(11)-Mn(5)-O(18)	94.0(3)
O(4)-Mn(2)-O(5)	167.4(3)	O(12)-Mn(3)-O(3)	129.3(2)	O(10)-Mn(5)-O(18)	86.4(3)
O(12)-Mn(2)-N(2)	169.5(3)	O(3)-Mn(4)-O(7)	90.8(3)	O(8)-Mn(5)-O(18)	85.4(2)
O(4)-Mn(2)-N(2)	88.4(3)	O(3)-Mn(4)-O(8)	94.5(3)	N(4)-Mn(5)-O(18)	89.5(3)
O(5)-Mn(2)-N(2)	82.3(3)	O(7)-Mn(4)-O(8)	170.7(3)	O(20)-Mn(5)-O(18)	173.0(3)
O(12)-Mn(2)-O(14)	97.4(3)	O(3)-Mn(4)-N(3)	162.4(3)	Mn(1)-O(2)-Mn(3)	119.6(3)
O(4)-Mn(2)-O(14)	95.4(3)	O(7)-Mn(4)-N(3)	89.8(3)	Mn(4)-O(3)-Mn(3)	123.7(3)
O(5)-Mn(2)-O(14)	93.6(3)	O(8)-Mn(4)-N(3)	82.9(3)	Mn(1)-O(5)-Mn(2)	127.6(3)
N(2)-Mn(2)-O(14)	93.1(3)	O(3)-Mn(4)-O(19)	100.9(3)	Mn(5)-O(8)-Mn(4)	127.1(3)
O(12)-Mn(2)-O(6)	88.2(3)	O(7)-Mn(4)-O(19)	94.7(3)	Mn(5)-O(11)-Mn(3)	118.7(3)
O(4)-Mn(2)-O(6)	96.9(3)	O(8)-Mn(4)-O(19)	91.8(2)	Mn(2)-O(12)-Mn(3)	124.4(3)

Table S3. Selected Bond Lengths (Å) and Bond Angles (deg) for Complex 3.

		e	•	U / I	
Mn(1)-O(19)	2.139(9)	Mn(2)-O(18)	2.122(12)	Mn(4)-N(3)	1.949(11)
Mn(1)-O(2)	2.146(10)	Mn(2)-O(15)	2.172(11)	Mn(4)-O(8)	1.975(10)
Mn(1)-O(13)	2.155(11)	Mn(3)-O(12)	1.818(9)	Mn(4)-O(21)	2.083(10)
Mn(1)-O(16)	2.237(11)	Mn(3)-O(4)	1.855(12)	Mn(4)-O(9)	2.403(10)
Mn(1)-O(3)	2.267(10)	Mn(3)-N(2)	1.957(14)	Mn(5)-O(19)	1.866(9)
Mn(1)-O(12)	2.280(11)	Mn(3)-O(5)	1.971(11)	Mn(5)-O(10)	1.873(10)
Mn(2)-O(1)	1.854(10)	Mn(3)-O(17)	2.108(12)	Mn(5)-O(8)	1.946(10)
Mn(2)-O(2)	1.872(9)	Mn(3)-O(6)	2.364(12)	Mn(5)-N(4)	1.995(13)
Mn(2)-O(5)	1.957(11)	Mn(4)-O(3)	1.839(9)	Mn(5)-O(20)	2.168(11)
Mn(2)-N(1)	1.965(15)	Mn(4)-O(7)	1.877(10)	Mn(5)-O(14)	2.259(11)
O(19)-Mn(1)-O(2)	113.4(4)	O(5)-Mn(2)-O(15)	90.0(4)	O(8)-Mn(4)-O(21)	94.8(4)
O(19)-Mn(1)-O(13)	93.3(4)	N(1)-Mn(2)-O(15)	91.2(5)	O(3)-Mn(4)-O(9)	89.4(4)
O(2)-Mn(1)-O(13)	140.4(4)	O(18)-Mn(2)-O(15)	174.3(4)	O(7)-Mn(4)-O(9)	98.5(4)
O(19)-Mn(1)-O(16)	142.0(4)	O(12)-Mn(3)-O(4)	92.1(5)	N(3)-Mn(4)-O(9)	79.7(4)
O(2)-Mn(1)-O(16)	92.5(4)	O(12)-Mn(3)-N(2)	171.7(6)	O(8)-Mn(4)-O(9)	72.9(4)
O(13)-Mn(1)-O(16)	81.7(4)	O(4)-Mn(3)-N(2)	89.3(6)	O(21)-Mn(4)-O(9)	166.3(4)
O(19)-Mn(1)-O(3)	80.5(4)	O(12)-Mn(3)-O(5)	94.6(5)	O(19)-Mn(5)-O(10)	174.7(4)
O(2)-Mn(1)-O(3)	73.2(4)	O(4)-Mn(3)-O(5)	165.5(5)	O(19)-Mn(5)-O(8)	89.5(4)
O(13)-Mn(1)-O(3)	142.8(4)	N(2)-Mn(3)-O(5)	82.2(5)	O(10)-Mn(5)-O(8)	95.8(4)
O(16)-Mn(1)-O(3)	81.2(4)	O(12)-Mn(3)-O(17)	95.8(5)	O(19)-Mn(5)-N(4)	84.4(5)
O(19)-Mn(1)-O(12)	72.1(3)	O(4)-Mn(3)-O(17)	94.9(5)	O(10)-Mn(5)-N(4)	90.3(5)
O(2)-Mn(1)-O(12)	80.8(4)	N(2)-Mn(3)-O(17)	92.3(5)	O(8)-Mn(5)-N(4)	172.6(4)
O(13)-Mn(1)-O(12)	80.5(4)	O(5)-Mn(3)-O(17)	97.2(5)	O(19)-Mn(5)-O(20)	88.5(4)
O(16)-Mn(1)-O(12)	142.3(4)	O(12)-Mn(3)-O(6)	89.1(4)	O(10)-Mn(5)-O(20)	91.6(4)
O(3)-Mn(1)-O(12)	130.4(4)	O(4)-Mn(3)-O(6)	94.1(5)	O(8)-Mn(5)-O(20)	94.2(4)
O(1)-Mn(2)-O(2)	173.8(5)	N(2)-Mn(3)-O(6)	82.6(5)	N(4)-Mn(5)-O(20)	89.9(5)
O(1)-Mn(2)-O(5)	95.6(4)	O(5)-Mn(3)-O(6)	73.3(4)	O(19)-Mn(5)-O(14)	92.2(4)
O(2)-Mn(2)-O(5)	90.6(4)	O(17)-Mn(3)-O(6)	169.6(5)	O(10)-Mn(5)-O(14)	87.6(4)
O(1)-Mn(2)-N(1)	89.5(5)	O(3)-Mn(4)-O(7)	92.0(4)	O(8)-Mn(5)-O(14)	86.3(4)
O(2)-Mn(2)-N(1)	84.3(5)	O(3)-Mn(4)-N(3)	169.1(5)	N(4)-Mn(5)-O(14)	89.7(5)
O(5)-Mn(2)-N(1)	174.8(5)	O(7)-Mn(4)-N(3)	90.2(5)	O(20)-Mn(5)-O(14)	179.1(4)
O(1)-Mn(2)-O(18)	88.5(5)	O(3)-Mn(4)-O(8)	93.7(4)	Mn(2)-O(2)-Mn(1)	116.7(5)
O(2)-Mn(2)-O(18)	90.4(4)	O(7)-Mn(4)-O(8)	169.6(4)	Mn(4)-O(3)-Mn(1)	121.6(5)
O(5)-Mn(2)-O(18)	90.7(5)	N(3)-Mn(4)-O(8)	82.6(4)	Mn(2)-O(5)-Mn(3)	126.5(5)
N(1)-Mn(2)-O(18)	88.6(5)	O(3)-Mn(4)-O(21)	97.5(4)	Mn(5)-O(8)-M n (4)	127.2(5)
O(1)-Mn(2)-O(15)	85.9(4)	O(7)-Mn(4)-O(21)	93.1(4)	Mn(3)-O(12)-Mn(1)	122.7(5)
O(2)-Mn(2)-O(15)	95.2(4)	N(3)-Mn(4)-O(21)	93.1(4)	Mn(5)-O(19)-Mn(1)	118.5(5)

Table S4. Selected Bond Lengt	ths (Å) and Bo	ond Angles (deg)	for Complex 4.
-------------------------------	----------------	------------------	----------------

Figure S2. The XRD patterns of complex 2.

Figure S3. The XRD patterns of complex 3.

Figure S4. The XRD patterns of complex 4.

Packing diagrams (Fig. S5 to Fig. S8) reveal the presence of intercluster π - π supramolecular interaction between the phenyl rings of the neighboring clusters in complexes 1-4.

Fig. S5. The molecular packing structure of complex 1 (H atoms and solvent molecules are omitted for clarity).

Fig. S6. The molecular packing structure of complex 2 (H atoms and solvent molecules are omitted for clarity).

Fig. S7. The molecular packing structure of complex 3 (H atoms and solvent molecules are omitted for clarity).

Fig. S8. The molecular packing structure of complex **4** (H atoms and solvent molecules are omitted for clarity).

Fig. S9. (top) Temperature dependence of χ_m (\circ) and $\chi_m T$ (\Box) values for **2**. The solid lines correspond to the best-fit curves using the parameters described in the text. (bottom) Spin topology for **2** assuming three different *J* values.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Fig. S10. (top) Temperature dependence of χ_m (\circ) and $\chi_m T$ (\Box) values for **4**. The solid lines correspond to the best-fit curves using the parameters described in the text. (bottom) Spin topology for **4** assuming three different *J* values.