Electronic Supporting Information

Co^{II}, Ni^{II}, Cu^{II}, and Zn^{II} complexes of a bipyridine bis-phenol conjugates: Generation and Properties of Coordinated Radical Species

Himanshu Arora, Christian Philouze, Olivier Jarjayes^{*}, and Fabrice Thomas^{*}

Dalton Trans.

Figure S1 Electronic spectra of the electrogenerated $[\mathbf{Zn}^{II}(\mathbf{L}^{\bullet})]^{2+}$ in CH₂Cl₂ (0.01 M TBAP). The insert represents the decay pattern at T = 298 K. l = 1.000 cm.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S2 Electronic spectra of the electrogenerated $[Co^{III}(L^{\cdot})]^+$ in CH₂Cl₂ (0.01 M TBAP); The insert represents the decay pattern at T = 298 K. l = 1.000 cm.

Figure S3 Electronic spectra of 0.05 mM solutions of $[Co^{II}(L)(Py)(O_2^{\bullet})]$ (dotted line) and the electrogenerated $[Co^{III}(L^{\bullet})(Py)_x]^{2+}$ (solid line) in CH₂Cl₂ containing 0.005 M TBAP, room temperature, path length = 1.000 cm; where x =1 or 2.

Figure S4 CV curves of CH₂Cl₂ solutions (+ 0.1 M TBAP) of the complexes (a) [Ni^{II}L], (b) [Co^{II}L] in the presence of 0.05 M pyridine. Concentrations are 0.75 mM, and the potentials are referenced *vs.* Fc⁺/Fc. Scan rate: 0.1 V.s⁻¹, T = 298 K

Figure S5 RDE curves of CH₂Cl₂ solutions (+ 0.1 M TBAP) of the complexes (a) [**Zn**^{II}**L**], (b) [**Cu**^{II}**L**], (c) [**Co**^{II}**L**]. T = 298 K. Concentrations are 0.75 mM except for [**Cu**^{II}**L**] (0.5 mM), and the potentials are referenced *vs.* Fc⁺/Fc. Scan rate: 0.01 V.s⁻¹ (500 rpm), T = 298 K.

Figure S6 Spectrochemical titration of $[Co^{II}(L)]$ with 0-2 equivalents of Tris(4-bromophenyl) ammonium hexachloro antimonate. Arrows indicate spectral changes upon addition of oxidizer. T = 298 K, l = 1.000 cm, $[Co^{II}L] = 0.05$ mM.

Figure S7 Spectrochemical titration of $[Ni^{II}L]$ with 0-1 equivalent of Tris(4-bromophenyl) ammonium hexachloro antimonate. Arrows indicate spectral changes upon addition of oxidizer. T = 298 K, l = 1.000 cm, $[Ni^{II}L] = 0.02$ mM.

Figure S8 Spectrochemical titration of $[Cu^{II}L]$ in CH₂Cl₂ with 0-1 quivalent of Tris(4bromophenyl) ammonium hexachloro antimonate. Arrows indicate spectral changes upon addition of oxidizer. T = 298 K, l = 1.000 cm, $[Cu^{II}L] = 0.05$ mM.