Catalytic Water Oxidation on Derivatized nanoITO

Zuofeng Chen, Javier J. Concepcion, Jonathan F. Hull, Paul G. Hoertz, and Thomas J. Meyer*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,

USA

Supporting Information

Figure S1. UV-vis-near IR spectrum and SEM images of oxidized ITO|nanoITO.

Supplementary Material (ESI) for Dalton Transactions

Figure S2. UV-vis-near IR spectrum and SEM images of *reduced* ITO|nanoITO.

Figure S3. (a) UV-vis spectra of ITO|*nano*ITO|**1-PO₃H₂** after various soaking times in 0.1 mM solution in methanol. (b) Dependence of the absorbance at 493 nm on the soaking time. $\Gamma_0 = 1.7 \times 10^{-8} \text{ mol/cm}^2$ (2.5 \Box m, 6.8 × 10⁻⁹ mol/cm²· \Box m).

Supplementary Material (ESI) for Dalton Transactions # This journal is (c) The Royal Society of Chemistry 2010

Figure S4. Adsorption isotherm for $1-PO_3H_2$ on ITO|*nano*ITO after soaking in methanol stock solution of different concentration for 72 h at 25 °C.

Figure S5. (a) Normalized cyclic voltammograms of ITO|*nano*ITO|**1-PO₃H₂** at pH 5 (0.036 M CH₃CO₂H-0.064 M CH₃CO₂Na) at different scan rates. The currents are normalized for scan rate, i/v. (b) Dependence of the current of the Ru(III/II) redox couple at ITO|*nano*ITO|**1-PO₃H₂** on the scan rate.

Figure S6. Square wave voltammogram of $\text{Ru}^{\text{IV}}(\text{OO})^{2+}$ (generated by adding × 3 Ce(IV) to 0.5 mM Ru^{II}-OH₂²⁺) in 0.1 M HNO₃ at a glassy carbon electrode. Incremental potential at each point, 0.004 V; square wave amplitude, 0.025 V; square wave frequency, 15 Hz. The dotted line represents the square wave voltammogram before Ce(IV) oxidation.

Figure S7. (a) Cyclic voltammograms of ITO|*nano*ITO|**1-PO₃H₂** at pH 3 (0.1 M phosphate buffer) before (blue line) and after (red line) scanning to 1.85 V. Scan rate, 10 mV/s; $\Gamma = 1.8 \times 10^{-9}$ mol/cm² (2.5 \Box m, 7.2 × 10⁻¹⁰ mol/cm²· \Box m). (b) Dependence of the electrocatalytic

current (*nano*ITO background subtracted) at 1.85 V vs NHE at pH 5 (0.036 M CH₃CO₂H-0.064 M CH₃CO₂Na) on surface complex loading. Scan rate, 10 mV/s.

Figure S8. (a) Cyclic voltammogram of ITO|*nano*ITO|**1-PO₃H₂** at pH 1 (0.1 M HNO₃) at a scan rate of 10 mV/s. The dotted line is the ITO|*nano*ITO background under the same experimental conditions. The inset shows cyclic voltammograms of ITO|*nano*ITO|**1-PO₃H₂** at pH 1 before (blue line) and after (red line) scanning to 1.85 V. (b) Electrolysis of ITO|*nano*ITO|**1-PO₃H₂** at 1.85 V vs NHE at pH 1. Number of turnovers \approx 180, turnover frequency \approx 0.006 s⁻¹ (background subtracted). $\Gamma = 1.7 \times 10^{-8}$ mol/cm², area = 1.25 cm², current density \approx 40 \Box A/cm² (16 \Box

 $A/cm^2 \cdot \Box m$).

Figure S9. UV-vis spectra of ITO|*nano*ITO|**1-PO**₃**H**₂ (red line), and following potential scans to 1.1 V (green line), 1.40 V (blue line) and 1.85 V (magenta line) vs NHE. Solution, pH 1 (0.1 M HNO₃); scan rate, 10 mV/s.

Figure S10. Changes in absorbance of ITO|*nano*ITO|**1-PO**₃**H**₂ at 493 nm and 650 nm with time during a potential step from 0.30 V vs NHE to the potentials indicated in the figure, followed by step backward to 0.30 V. Solution, pH 1 (0.1 M HNO₃).

Figure S11. (a) Spectra evolution of FTO|*nano*TiO₂|**1-PO₃H₂** at pH 1 (0.1 M HNO₃) during CV scan between 0.2 - 1.1 V. The monitoring wave lengths are $\lambda_{max} = 493$ nm for Ru^{II}-OH₂²⁺ (red line), and $\lambda_{max} = 650$ nm for Ru^{III}-OH₂³⁺ (blue line). Scan rate, 10 mV/s. *nano*TiO₂ $\Gamma = 5.3 \times 10^{-8}$ mol/cm² (10 \Box m, 5.3 × 10⁻⁹ mol/cm²· \Box m). Only ~8% of the available sites were electroactive

as calculated from the absorption decrease at $\lambda_{max} = 493$ nm during 10 mV/s cyclic scan. (b) Absorbance change (493 nm) of FTO|TiO₂|**1-PO₃H₂** at pH 1 (0.1 M HNO₃) with potential hold at 0.95 V vs NHE past $E_{1/2}$ for Ru^{III}-OH₂³⁺/Ru^{II}-OH₂²⁺ couple.