Supplementary information for

Hierarchical self-assembly of metallo-dendrimers

Markus Albrecht,*^{*a*} Miriam Baumert^{*a*}, Hendrick Winkler,^{*b*} Christoph A. Schalley^{*b*} and Roland Fröhlich^{*c*}

Preparation of the 2,3-Diacetobenzoic acid 3

2,3-Dihydroxybenzoic acid 2 (1eq.), acetic anhydride (3 eq.) and a few drops of sulfuric acid were heated to 100°C for two hours. The mixture was cooled and 5 ml ice water were added. The precipitate was collected, dissolved in chloroform (100 ml) and washed with water (100 ml). The organic phase was dried under reduced pressure to give the crude product.

Yield: 98% colourless solid. Mp 156-159°C. - ¹H-NMR (CDCl₃) δ = 7.92 (dd, J = 8.0, 1.7 Hz, 1H), 7.37 (dd, J = 8.0, 1.7 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 2.27 (s, 3H), 2.25 (s, 3H).¹³C-NMR (CDCl₃) δ = 186.6 (C), 168.9 (C), 168.2 (C), 143.6 (C), 143.1 (C), 129.6 (CH), 128.8 (CH), 126.2 (C), 123.9 (C), 20.7 (CH₃). - EI-MS: m/z = 238 [M]^{+•}. IR (cm⁻¹) = 1772, 1692, 1585, 1470, 1423, 1371, 1306, 1205, 1159, 1020, 911, 857, 755, 695. - Calcd. for C₁₁H₁₀O₆: C 55.47, H 4.23, found: C 55.16, H 3.97.

General procedure for the preparation of the dendritic ligands

Bromide **5a-c** (1 eq.), ⁱ 2,3-diacetobenzoic acid **3** (1 eq.) and K_2CO_3 (6 eq.) were suspended in acetone and the mixture was heated to reflux for three hours. After cooling salts were filtered off and the organic layer was evaporated. The product was purified by chromatography (CH₂Cl₂/*n*-pentane, 3/1). The crude esters **6a-c** (1 eq.) and K_2CO_3 (6 eq.) were suspended in acetone /water (10/1) and heated to reflux for three hours. After cooling, water was added and the obtained precipitate was filtered and purified by chromatography (CH₂Cl₂).

1a-H₂: Yield: 74 % colourless solid. Mp 87-89°C. - ¹H-NMR (CDCl₃) δ = 10.80 (s, 10H), 7.40 (dd, J = 7.9, 1.7 Hz, 1H), 7.10 (dd, J = 7.9, 1.7 Hz, 1H), 6.76 (t, J = 7.9 Hz, 1H), 6.56 (d, J = 2.5 Hz, 2H), 6.40 (t, J = 2.5 Hz, 1H), 5.83 (br, 1 OH), 5.29 (s, 2H), 3.78 (s, 6H). - ¹³C-NMR (CDCl₃) δ = 170.0 (C), 160.9 (C), 149.0 (C), 145.1 (C), 137.4 (C), 120.7 (CH), 120.1 (CH), 119.3 (CH), 112.4 (C), 106.0 (CH), 100.2 (CH), 67.0 (CH₂), 55.4 (CH₃). - EI-MS: m/z = 304 [M]^{+•}. - IR (cm⁻¹) = 3476, 1741, 1671, 1601, 1473, 1383, 1459, 1309, 1271, 1236, 1208, 1156, 1066, 1020, 841, 749, 677. – Calcd. for C₁₆H₁₆O₆: C 63.15, H 5.30, found: C 63.24, H 5.14.

1b-H₂: Yield: 66 % colourless solid. Mp 106-109°C. - ¹H-NMR (CDCl₃) δ = 10.76 (s, 10H), 7.35-7.25 (m, 11H), 7.03 (d, J = 8.1 Hz, 1H), 6.72 (t, J = 8.1 Hz, 1H), 6.57 (d, J = 2.2 Hz,

2H), 6.52 (t, J = 2.2 Hz, 1H), 5.60 (s, 1 OH), 5.21 (s, 2H), 4.95 (s, 4H). - 13 C-NMR (CDCl₃) δ = 170.0 (C), 160.1 (C), 148.9 (C), 145.0 (C), 137.4 (C), 136.6 (C), 128.6 (CH), 128.1 (CH), 127.5 (CH), 120.7 (CH), 120.0 (CH), 119.3 (CH), 112.4 (C), 107.1 (CH), 102.0 (CH), 70.2 (CH₂), 67.0 (CH₂). - EI-MS: m/z = 456 [M]^{+•}. - IR (cm⁻¹) = 3538, 1682, 1598, 1463, 1367, 1301, 1264, 1156, 1061, 829, 755, 735, 696. – Calcd. for C₂₈H₂₄O₆: C 73.70, H 5.30, found: C 73.50, H 5.30.

1c-H₂: Yield: 38 % colourless solid. Mp 119°C. - ¹H-NMR (CDCl₃) δ = 10.83 (s, 10H), 7.42-7.30 (m, 21H), 7.08 (d, J = 8.0 Hz, 1H), 6.77 (t, J = 8.0 Hz, 1H), 6.66 (d, J = 2.2 Hz, 4H), 6.63 (d, J = 2.2 Hz, 2H), 6.57 (d, J = 2.2 Hz, 2H), 6.54 (d, J = 2.2 Hz, 1H), 5.65 (s, 1 OH), 5.28 (s, 2H), 5.02 (d, J = 4.1 Hz, 8H), 4.96 (d, J = 4.1 Hz, 4H)). - ¹³C-NMR (CDCl₃) δ = 160.1 (C), 160.0 (C), 159.9 (C), 139.1 (C), 139.0 (C), 138.2 (C), 137.4 (C), 136.8 (C), 136.7(C), 128.6 (CH), 128.0 (CH), 127.6 (CH), 120.7 (CH), 120.0 (CH), 119.3 (CH), 107.2 (CH), 106.4 (CH), 102.0 (CH), 101.6 (CH), 70.2 (CH₂), 70.1 (CH₂), 70.0 (CH₂). - ESI-MS: m/z = 879 [M-H][•]. - IR (cm⁻¹) = 3065, 3032, 2932, 2873, 1737, 1673, 1598, 1463, 1377, 1343, 1304, 1150, 1056, 837, 754, 698. – Calcd. for C₅₆H₄₈O₁₀: C 76.35, H 5.49, found C 76.16, H 5.83.

General procedure for the preparation of the metal complexes

Ligand **1a-c-H₂** (3 eq.), TiO(acac)₂ (1 eq.) and base (Li₂CO₃, K₂CO₃, 1 eq.) were dissolved in methanol/CH₂Cl₂ (1:2) and stirred overnight. Solvent was removed under reduced pressure to give the complex as red solid. Gallium complexes were prepared the same way starting from ligand **1a/b-H₂** (3 eq.), Ga(acac)₃ (1 eq.) and base (Li₂CO₃, K₂CO₃, 1.5 eq.) to give light yellow solids as products.

Li₄(1**a**)₆**Ti**₂: Yield: quanititative, red solid. - ¹H-NMR (CD₃OD) δ = 7.09 (dd, J = 8.0, 1.6 Hz, 6H), 6.53 (dd, J = 8.0, 1.6 Hz, 6H), 6.49 (t, J= 8.0 Hz, 6H), 6.28 (d, J = 2.2 Hz, 12H), 6.23 (d, J = 2.2 Hz, 6H), 4.37 (d, J = 12.6 Hz, 6H), 3.92 (d, J = 12.6 Hz, 6H), 3.62 (s, 36H). - neg. ESI-MS: m/z = 1929 [Li₃(1**a**)₆Ti₂]⁻, 961 [Li(1**a**)₃Ti]⁻. - IR (cm⁻¹) = 3433, 1681, 1599, 1447, 1297, 1255, 1217, 1154, 1067, 1213, 816, 749, 690, 538. - Calcd. for C₄₈H₄₂O₁₈TiLi₂•6MeOH: C 55.87, H 5.73, found: C 55.56, H 5.33.

Li₆(**1a**)₆**Ga**₂: Yield: quanititative, light yellow solid. - ¹H-NMR (CD₃OD) δ = 6.93 (dd, J = 8.0, 1.4 Hz, 6H), 6.62 (dd, J = 8.0, 1.4 Hz, 6H), 6.40 (s, 12H), 6.27 (s, 6H), 6.15 (t, J = 8.0 Hz, 6H), 4.41 (br, 6H), 4.06 (br, 6H), 3.68 (s, 36H). - neg. ESI-MS: m/z = 1982 [HLi₄(**1a**)₆Ga₂]⁻, 990 [M_M-Li]⁻. IR (cm⁻¹) = 1681, 1599, 1459, 1301, 1266, 1218, 1153, 1068, 1016, 744. Anal. Calcd. for C₄₈H₄₂O₁₈GaLi₃•8MeOH: C 53.65, H 5.94, found: C 53.50, H 5.69.

Li₄(**1b**)₆**Ti**₂: Yield: quanititative, red solid. - ¹H-NMR (CD₃OD:CDCl₃, 1:2) δ = 7.18 (m, 60H), 6.97 (dd, J = 8.0, 1.4 Hz, 6H), 6.49 (dd, J= 8.0, 1.4 Hz, 6H), 6.32 (s, 18H), 6.28 (t, J = 8.0 Hz, 6H), 4.78 (s, 24H), 4.35 (d, J = 12.9 Hz, 6H), 3.87 (d, J = 12.9 Hz, 6H). – neg. ESI-MS: m/z = 2843 [Li₃(**1b**)₆Ti₂]⁻. - IR (cm⁻¹) = 1681, 1597, 1447, 1377, 1296, 1255, 1217, 1153, 1061, 1011, 816, 744, 694, 539. – Calcd. for C₈₄H₆₆O₁₈TiLi₂•3MeOH: C 68.69, H 5.17, found: C 68.76, H 5.16.

K₂(**1b**)₃**Ti:** Yield: quanititative, red solid. ¹H-NMR (CD₃OD:CDCl₃, 1:2) δ = 7.25-7.15 (m, 36H), 7.05 (d, J = 6.2 Hz, 3H), 6.42 (br, 9H), 5.05 (s, 6H), 4.90 (s, 12H). - ESI-MS: m/z = 1450 [K(**1b**)₃Ti]⁻. - IR (cm⁻¹) = 1696, 1597, 1448, 1376, 1289, 1257, 1217, 1151, 1060, 1011, 832, 742, 696, 676, 536. – Calcd. for C₈₄H₆₆O₁₈TiK₂•3MeOH: C 65.90, H 4.97, found: C 65.44, H 4.50.

Li₆(1b)₆Ga₂: Yield: quanititative, colourless solid. - ¹H-NMR (CD₃OD/CDCl₃; 1:4) δ = 7.25-7.15 (m, 60H), 6.95 (dd, J = 8.2, 1.4 Hz, 6H), 6.60 (dd, J = 8.2, 1.4 Hz, 6H), 6.44 (s, 12H), 6.32 (s, 6H), 6.13 (t, J = 8.2 Hz, 6H), 4.79 (s, 24H), 4.43 (d, J = 11.4 Hz, 6H), 3.96 (d, J = 11.4 Hz, 6H). – neg. ESI-MS: m/z = 2960 [Li₆(1b)₆Ga₂(MeOH)₂H]⁻. - IR (cm⁻¹) = 3392, 2927, 1680, 1597, 1457, 1379, 1300, 1266, 1219, 1152, 1065, 1015, 833, 742, 697, 497. – Calcd. for C₈₄H₆₆O₁₈GaLi₃•MeOH: C 68.70, H 4.75, found: C 68.53, H 4.44.

Li₄(**L**²)₆**Ti**₂: Yield: quanititative, red solid. - ¹H-NMR (CD₃OD:CDCl₃, 1:4) δ = 7.28-7.10 (m, 120H), 7.04 (m, 6H), 6.55 (br, 12H), 6.43 (br, 24H), 6.28 (br, 30H), 4.90 (br, 24H), 4.58 (br, 48H), 4.31 (br, 6H), 3.82 (br, 6H). - IR (cm⁻¹) = 3417, 2934, 2868, 1734, 1682, 1597, 1448, 1379, 1294, 1257, 1216, 1153, 1049, 829, 738, 691. – Calcd. for C₁₆₈H₁₃₈O₃₀TiLi₂•10H₂O: C 70.09, H 5.53, found: C 70.09, H 5.50.

X-ray structure analysis: Data set was collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN (Z. Otwinowski, W. Minor, *Methods in Enzymology*, **1997**, *276*, 307-326), absorption correction Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, *Acta Cryst.* **2003**, *A59*, 228-234), structure solution SHELXS-97 (G.M. Sheldrick, *Acta Cryst.* **1990**, *A46*, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112-122), graphics SCHAKAL (E. Keller, Univ. Freiburg, 1997).

Fig. S1 ¹H NMR spectra of **1a-H**₂ in methanol-d₄ (bottom) and of Li₄[Ti₂(**1a**)₆] in methanol-d₄ / CDCl₃, 2/1 (top). Unfortunately the solubility properties enforce dissolution of the compounds in different solvents. However, remarkable differences (e. g. diastereotopic behavior of CH₂ protons) can be observed.

Fig. S2 ¹H NMR spectra of $1b-H_2$ in methanol-d₄ (bottom) and of Li₄[Ti₂(1b)₆] in methanol-d₄ / CDCl₃, 1/2 (top).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S3 ¹H NMR spectra of $Li_4[Ti_2(1c)_6]$ in methanol-d₄ / CDCl₃, 1/4.

ⁱ C. Hawker and J. M. J. Frechet, Chem. Commun 1990, 1010.