Supporting Information

Interpenetrating Icosahedra Chains Based Zinc-Rich Ternary Phases Ru_{4.0}Sn_{2.9}Zn_{11.6} and Ru_{3.0}Sb_{0.97}Zn_{11.0}: Synthesis, Structures and Physical Properties

Ding-Bang Xiong, ${}^{\ddagger a}$ Kai Yang, b Yufeng Zhao ${}^{\ast a,b}$ and Jan Ma b

 ^aDepartment of Chemistry and Center of Materials Science, Philipps University, D-35032 Marburg, Germany
^bSchool of Materials Science & Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
E-mail: fengeryz@gmail.com; xiong.dingbang@ky8.ecs.kyoto-u.ac.jp

Table	S1	Anisotropic	displacement	parameters	(in	Å ²)	for	Ru _{3.0} Sb _{0.97} Zn _{11.0}	and
Ru ₄ Sn ₂	$_{2.9}$ Zn	111.6.							

 $Ru_{3.0}Sb_{0.97}Zn_{11.0}$

Atom	<i>U</i> ₁₁	U_{22}	U_{33}	U_{12}	<i>U</i> ₁₃	U_{23}
Sb	0.0166(4)	0.0111(4)	0.0048(4)	0.0090(3)	0.00000	0.00000
Zn6	0.0166(4)	0.0111(4)	0.0048(4)	0.0090(3)	0.00000	0.00000
Ru1	0.0221(5)	0.0027(4)	0.0040(4)	0.00000	0.00000	0.00000
Ru2	0.0057(3)	0.0021(3)	0.0039(3)	0.00000	0.00000	-0.0003(2)
Zn1	0.0069(6)	0.0094(7)	0.0077(6)	0.00000	0.00000	-0.0040(5)
Zn2	0.0093(3)	0.0158(4)	0.0176(4)	0.0041(3)	-0.0024(3)	-0.0047(3)
Zn3	0.0180(5)	0.0059(5)	0.0172(5)	0.00000	0.00000	-0.0049(4)
Zn4	0.0263(7)	0.0403(9)	0.0254(6)	0.0255(7)	-0.0162(6)	-0.0212(6)
Zn5	0.082(2)	0.0269(12)	0.0177(10)	0.00000	0.00000	0.0161(9)

$Ru_4Sn_{2.9}Zn_{11.6}$

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	U ₁₃	U_{23}
Sn	0.0089(4)	0.0084(4)	0.0114(4)	0.0029(2)	0.0030(3)	0.0010(2)
Zn8	0.0089(4)	0.0084(4)	0.0114(4)	0.0029(2)	0.0030(3)	0.0010(2)
Ru1	0.0018(4)	0.0045(5)	0.0056(5)	0.00000	0.0018(4)	0.00000
Ru2	0.0029(5)	0.0062(4)	0.0065(5)	0.00000	0.0021(4)	0.00000
Zn1	0.0115(9)	0.0043(8)	0.0094(9)	0.00000	0.0039(8)	0.00000
Zn2	0.0081(5)	0.0020(5)	0.0061(5)	0.0007(3)	0.0036(4)	0.0004(3)
Zn3	0.0027(8)	0.0120(9)	0.0120(9)	0.00000	0.0000(7)	0.00000
Zn4	0.0065(7)	0.0132(7)	0.0163(8)	0.00000	0.0066(6)	0.00000
Zn5	0.0330(12)	0.0205(11)	0.0169(10)	0.0207(8)	0.0177(8)	0.0124(7)
Zn6	0.032(3)	0.052(3)	0.0206(19)	0.00000	-0.0198(16)	0.00000

Crystallographic data						
Chemical formula	$Ru_4Sn_{2.88}Zn_{11.73}$					
M _r	1513.06					
Space group (no.), Z	<i>C</i> 2/ <i>m</i> (12), 2					
Pearson symbol	<i>m</i> C46–δ					
<i>a</i> / Å	6.8307(14)					
b / Å	7.9848(16)					
<i>c</i> / Å	11.047(2)					
β / \circ	97.50(3)					
V/ Å ³	597.4(2)					
$D_{\rm c}/{\rm g~cm^{-3}}$	8.370					
μ/mm^{-1}	33.527					
Data collection						
Crystal size/mm ³	$0.07 \times 0.17 \times 0.19$					
Diffractometer	IPDS (Stoe & Cie)					
Radiation	MoKa					
Monochromator	Graphite					
Crystal-IP distance/mm	60					
T/K	293(2)					
$\varphi_{\min} - \varphi_{\max}; \Delta \varphi / \circ$	0-250; 1.2					
$\theta_{\rm max}/\circ$	28.06					
Reflections measured	3859					
Index range, <i>hkl</i>	-8 to 9, -10 to 10, -14 to 14					
Data reduction						
Data reduction/	IPDS-Software ^[30] / numerical					
Absorption correction	X-RED ^[31] , X-SHAPE ^[32]					
Min/Max transmission	0.0277 / 0.0998					
Unique reflections	767					
_ R _{int}	0.2216					
Refinement						
Programs	SHELXTL version 6.10					
Refinement method	Full matrix least squares on F^2					
No. used reflections	767					
No. variables	58					
Obs. reflection $(I_0 > 2\sigma(I_0))$	598					
$R(F)^{a} (I_{o} > 2\sigma(I_{o}))$	0.0998					
R(F) (all data)	0.1116					
$wR(F^2)^{b}$ (all data)	0.2387					
Goodness of fit (F^2)	1.004					
$\Delta \rho_{\rm min} / \Delta \rho_{\rm max} / {\rm e \ \AA^3}$	-6.301 / 4.274					

Table S2. Crystallographic and technical data of the single crystal structure refinements of annealed $Ru_4Sn_{2.9}Zn_{11.5}$.

^a
$$R = \sum ||F_o| - |F_c|| / \sum |F_o|;$$
 ^b $wR = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}.$

Table S3. Atomic coordinates and equivalent displacement parameters (Å²) for annealed Ru₄Sn_{2.9}Zn_{11.5}.

Compound	Atom	Wyckoff	x	У	Ζ	U_{eq}^{a}	Occupancy $\neq 1$
Ru ₄ Sn _{2.8} Zn _{11.5}	M(Sn/Zn8)	8j	0.18203(15)	0.31645(16)	0.60914(11)	0.0094(3)	0.72/0.20
	Ru1	4 <i>i</i>	0.14869(19)	1/2	0.39366(14)	0.0039(3)	
	Ru2	4 <i>i</i>	0.23213(19)	1/2	0.82701(14)	0.0051(3)	
	Zn1	2b	0	1/2	0	0.0082(4)	
	Zn2	8 <i>j</i>	0.07742(2)	0.29822(2)	0.19655(15)	0.0052(3)	
	Zn3	2c	0	0	1/2	0.0090(4)	
	Zn4	4 <i>i</i>	0.42288(3)	1/2	0.25173(2)	0.0116(4)	
	Zn5	4e	1/4	1/4	0	0.0222(8)	0.973
	Zn6	2a	0	0	0	0.037(2)	0.981

^a U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table S4 Anisotropic displacement parameters (in Å²) for annealed Ru₄Sn_{2.9}Zn_{11.6}.

11	Um	Um	Un	U_{12}	Um
$\frac{11}{0160(5)}$	$\frac{0.0248(7)}{0.0248(7)}$	0.0245(6)	$\frac{0.0044(4)}{0.0044(4)}$	-0.0046(4)	0.0010(5)
0160(5)	0.0248(7)	0.0245(6)	0.0044(4)	-0.0046(4)	0.0010(5)
0093(5)	0.0205(8)	0.0167(7)	0.00000	-0.0056(5)	0.00000
0090(5)	0.0200(7)	0.0182(7)	0.00000	-0.0052(5)	0.00000
0156(12)	0.0211(16)	0.0238(16)	0.00000	-0.0014(11)	0.00000
0176(6)	0.0201(8)	0.0211(8)	0.0028(6)	-0.0032(6)	0.0001(7)
0101(12)	0.0328(18)	0.0287(17)	0.00000	-0.0096(11)	0.00000
0139(9)	0.0304(13)	0.0302(13)	0.00000	0.0000(8)	0.00000
0371(14)	0.0338(16)	0.0304(16)	0.0158(11)	0.0093(10)	0.0096(12)
032(2)	0.058(3)	0.037(2)	0.00000	-0.0209(16)	0.00000
	II 0160(5) 0160(5) 0093(5) 0090(5) 0156(12) 0176(6) 0101(12) 0139(9) 0371(14) 032(2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S5. Interatomic distances (Å) in the structures of annealed $Ru_4Sn_{2.9}Zn_{11.6}$.

atomi	c pair	distance	atomic pair	distance	atomic pair	distance
М –	Ru1	2.690(2)	Zn1 –Zn5 ×4	2.627(0)	Zn4 – Ru1	2.595(18)
	Zn2	2.688(39)	Ru2 ×2	2.638(34)	Ru2	2.616(23)
	Ru1	2.779(6)	Zn2 ×4	2.700(13)	Zn3	2.725(16)
	Ru1	2.781(1)	Zn6 ×2	3.415	$Zn2 \times 2$	2.706(7)
	Ru2	2.801(9)	Zn2 – Zn5	2.631(29)	$Zn2 \times 2$	2.857(15)
	М	2.896(23)	Ru2	2.644(6)	Zn6	2.897(15)
	М	2.931(2)	М	2.688(39)	M×2	3.090(11)
	Zn2	2.960(38)	Zn1	2.700(10)	M×2	3.273
	Zn3	2.999(15)	Ru1	2.702(11)	Zn5 – Zn6 ×2	2.627(0)
	Zn3	3.000(26)	Zn4	2.706(7)	$Zn1 \times 2$	2.627(0)
	Zn4	3.090(14)	Ru2	2.742(4)	Zn2 ×2	2.631(29)
	М	3.230(19)	Zn4	2.857(15)	$Ru2 \times 2$	2.755(3)
	Zn4	3.273	Zn5	2.932(49)	$Zn2 \times 2$	2.932(49)
Ru1 -	- Zn3	2.530(33)	М	2.960(38)	Zn5 ×2	3.415
	Zn4	2.595(34)	Zn2	3.223	$Zn6 - Ru2 \times 2$	2.467(42)
	M×2	2.690(2)	Zn6	3.219	Zn5 ×4	2.627(0)
	Zn2 ×2	2.702(12)	$Zn2 \times 2$	3.501	Zn4 ×2	2.897(15)
	M×2	2.779(6)	Zn3 – Ru1 ×2	2.530(33)	Zn2 ×4	3.219
	M×2	2.781(13)	$Zn4 \times 2$	2.725(16)	Zn1 ×2	3.415
	Ru1	3.300	M ×4	2.999(15)		
	Ru2	3.325	M ×4	2.999(15)		
Ru2-	Zn6	2.467(42)				
	Zn4	2.616(23)				
	Zn1	2.638(34)				
	Zn2 ×2	2.644(6)				
	Zn2 ×2	2.742(4)				
	Zn5 ×2	2.755(3)				
	M ×2	2.801(9)				
	Ru1	3.325				

Compounds	Ru L	Sb L	Zn L					
$Ru_{3.0}Sb_{0.97}Zn_{11}$								
Crystal-1	20.10	6.15	73.75					
Crystal-2	20.30	6.49	73.21					
Crystal-3	20.08	6.82	73.11					
Crystal-4	19.72	6.66	73.62					
Crystal-5	20.35	6.06	73.58					
Average (100%)	20.11(4)	6.44(4)	73.45(9)					
Ru ₄ Sn _{2.9} Zn _{11.6}								
Crystal-1	21.20	15.59	63.21					
Crystal-2	21.18	15.37	63.45					
Crystal-3	21.08	15.94	62.98					
Crystal-4	21.44	15.48	63.08					
Crystal-5	21.34	15.34	63.32					
Average (100%)	21.25(3)	15.54(2)	63.21(3)					

Table S6. EDX results for $Ru_{3.0}Sb_{0.97}Zn_{11.0}$ and $Ru_4Sn_{2.9}Zn_{11.6}$.

Figure S1 Rietveld refinements of and $Ru_{3.0}Sb_{0.97}Zn_{11.0}$ (a) and $Ru_4Sn_{2.9}Zn_{11.6}$ (b) shown observed and calculated powder diffraction profiles (top), difference plot of the Rietveld refinement (bottom) and the reflection positions (middle). Both phases are almost pure, except for $Ru_9Zn_7Sb_8$ (~ 3.8 wt %) as impurities in $Ru_{3.0}Sb_{0.97}Zn_{11.0}$, and unknown phase (indicated by *) in $Ru_4Sn_{2.9}Zn_{11.6}$.

Figure S2. The relationship between the lengths of two and three interpenetrating icosahedra units. Given a regular pentagon with edge length of unity and its diagonal will be the golden mean τ . An icosahedron with edge length of unity has midradius that touches the middle of each edge equal to $\tau/2$, and the circumdiameter equal to $\sqrt{(1+\tau^2)}$ (Equation 2). If we denoted the length of pentagonal prism cap and antiprism in icosahedron as m and n, they can be expressed by equation (1) and (2), based on which we can present the origin of the equation (4) by equation (3). Namely, double lengths of three mutually interpenetrated icosahedra, (4m + 6n), is $(1 + \tau)$ times longer than that of two, (2m + 2n).

Figure S3 DTA curve for $Ru_{3.0}Sb_{0.97}Zn_{11.0}(a)$ and $Ru_4Sn_{2.9}Zn_{11.6}(b)$.

(a)

Figure S4 Temperature dependence of the magnetic susceptibilities of $Ru_{3.0}Sb_{0.97}Zn_{11.0}$ (a) and $Ru_4Sn_{2.9}Zn_{11.6}$ (b) determined with a magnetic flux of 5 Tesla.