#### **Electronic Supplementary Information**

# Ferrocene-based multichannel molecular chemosensors with high selectivity and sensitivity for Pb(II) and Hg(II) metal cations

María Alfonso, Alberto Tárraga, \* and Pedro Molina\*

Departamento de Química Orgánica. Facultad de Química. Universidad de Murcia. Campus de Espinardo, E-30100 Murcia, Spain. E-mail: <u>pmolina@um.es</u>; atarraga@um.es

| Table of contents                                                             |            |
|-------------------------------------------------------------------------------|------------|
| <sup>1</sup> H- and <sup>13</sup> C-NMR of ligands <b>6a</b> , <b>4b-6b</b>   | S4         |
| Figure SI 1. Evolution of the CV and OSWV of 6a in the presence of increasing |            |
| amounts of several cations in CH <sub>3</sub> CN.                             | <b>S</b> 8 |
| Figure SI 2. Evolution of the CV and OSWV of 6b in the presence of increasing | ,          |
| amounts of several cations in CH <sub>3</sub> CN.                             | S9         |
| Figure SI 3. Evolution of the LSW of 6a in the presence of increasing amounts |            |
| of several cations in CH <sub>3</sub> CN                                      | S10        |
| Figure SI 4. Evolution of the LSW of 6b in the presence of increasing amounts |            |
| of several cations in CH <sub>3</sub> CN                                      | S11        |
| Figure SI 5. Evolution of the OSWV of 6a in the presence of increasing        |            |
| amounts of several anions in CH <sub>3</sub> CN.                              | S12        |
| Figure SI 6. Evolution of the OSWV of 6b in the presence of increasing        |            |
| amounts of several anions in CH <sub>3</sub> CN.                              | S13        |
| Figure SI 7. Changes in the absorption spectrum of 6a upon addition of        |            |
| increasing amounts of several cations in CH <sub>3</sub> CN.                  | S14        |

| Figure SI 8. Changes in the absorption spectrum of 6b upon addition of                |     |
|---------------------------------------------------------------------------------------|-----|
| increasing amounts of several cations in CH <sub>3</sub> CN.                          | S15 |
| Figure SI 9. Changes in the absorption spectrum of 6a upon addition of                |     |
| increasing amounts of several anions in CH <sub>3</sub> CN.                           | S16 |
| Figure SI 10. Changes in the absorption spectrum of 6b upon addition of               |     |
| increasing amounts of several anions in CH <sub>3</sub> CN.                           | S17 |
| Figure SI 11. Change of absorbance of $6a$ upon addition of $Cd^{2+}$ indicating      |     |
| the formation of complex 2:1 and job's plot for <b>6a</b> and several cations.        | S18 |
| Figure SI 12. Job's plot for 6b and several cations.                                  | S19 |
| Figure SI 13. Reversibility experiment of compound 6a.                                | S20 |
| Figure SI 14. Reversibility experiment of compound 6b.                                | S21 |
| Figure SI 15. Semilogarithmic plot for determining the detection limit of             |     |
| 6a towards several cations.                                                           | S22 |
| Figure SI 16. Semilogarithmic plot for determining the detection limit of             |     |
| <b>6b</b> towards several cations.                                                    | S23 |
| Figure SI 17. Fluorescence intensity of ligands 6a and 6b in CH <sub>3</sub> CN after |     |
| addition of several cations.                                                          | S24 |
| Figure SI 18. Changes in the fluorescence emission of 6a upon addition of             |     |
| $Pb^{2+}$ in $CH_3CN$ .                                                               | S24 |
| Figure SI 19. Changes in the fluorescence emission of 6b upon addition of             |     |
| $Hg^{2+}$ in $CH_3CN$ .                                                               | S25 |
| Figure SI 20. Semilogarithmic plot for determining the detection limit of 6a          |     |
| and <b>6b</b> towards $Pb^{2+}$ and $Hg^{2+}$ respectively in $CH_3CN$ .              | S25 |
| Figure SI 21. Changes in the <sup>1</sup> H-NMR spectrum of 6a upon addition          |     |
| of increasing amounts of Cd <sup>2+</sup> .                                           | S26 |
| Figure SI 22. Changes in the <sup>1</sup> H-NMR spectrum of 6a upon addition          |     |
| of increasing amounts of $Zn^{2+}$ .                                                  | S26 |
| Figure SI 23. Changes in the <sup>1</sup> H-NMR spectrum of 6a upon addition          |     |
| of increasing amounts of $HP_2O_7^{3-}$ .                                             | S27 |
| Figure SI 24. Changes in the <sup>1</sup> H-NMR spectrum of 6b upon addition          |     |
| of increasing amounts of Pb <sup>2+</sup> .                                           | S27 |
| Figure SI 25. Changes in the <sup>1</sup> H-NMR spectrum of 6b upon addition          |     |
| of increasing amounts of Ni <sup>2+</sup> .                                           | S28 |

| Figure SI 26. Changes in the <sup>1</sup> H-NMR spectrum of 6b upon addition |     |
|------------------------------------------------------------------------------|-----|
| of increasing amounts of $Cd^{2+}$ .                                         | S28 |
| Figure SI 27. Changes in the <sup>1</sup> H-NMR spectrum of 6a upon addition |     |
| of increasing amounts of $HP_2O_7^{3-}$ .                                    | S29 |
| Figure SI 28. Relative abundance of the isotopic cluster of the complex      |     |
| for <b>6a</b> with several cations and $HP_2O_7^{3-}$ .                      | S30 |
| Figure SI 29. Relative abundance of the isotopic cluster of the complex      |     |
| for <b>6b</b> with several cations.                                          | S31 |

#### 2-Ferrocenil-7,8-Diphenyl-3*H*-imidazo[4,5-*f*]quinoxalines, [6a]

<sup>1</sup>H NMR (400MHz, MeOD)



<sup>&</sup>lt;sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):



#### 5-amino-6-nitro-2,3-di(2-pyridyl)quinoxaline, [4b]



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):



#### 5,6-diamino-2,3-di(2-pyridyl)quinoxaline, [5b]

## <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>):



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):



### 2-Ferrocenyl-7,8-Di-(2-pyridyl)-3*H*-imidazo[4,5-*f*]quinoxalines, [6b]

#### 

## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):





**Figure SI 1**. Evolution of the CV (left) and OSWV (right) of **6a** (1 mM) in CH<sub>3</sub>CN/[(*n*-Bu)<sub>4</sub>]ClO<sub>4</sub> scanned at 0.1 V s<sup>-1</sup> in the presence of increasing amounts of: (a) Cd<sup>2+</sup>; (b) Zn<sup>2+</sup>; (c) Hg<sup>2+</sup>.



**Figure SI 2.** Evolution of the CV (left) and OSWV (right) of **6b** (1 mM) in CH<sub>3</sub>CN/[(*n*-Bu)<sub>4</sub>]ClO<sub>4</sub> scanned at 0.1 V s<sup>-1</sup> in the presence of increasing amounts of: (a) Pb<sup>2+</sup>; (b) Cd<sup>2+</sup>; (c) Zn<sup>2+</sup>; (d) Ni<sup>2+</sup>.



**Figure SI 3**. Evolution of the LSW of **6a** (1mM) in the presence of increasing amounts of (a)  $Cd^{2+}$ ; (b)  $Cd^{2+}$ ; (c)  $Hg^{2+}$ ; (d)  $Pb^{2+}$ ; (e)  $Cu^{2+}$ , obtained using a rotating disk electrode at 100 mVs<sup>-1</sup> and 1000 rpm and  $[(n-Bu)_4]ClO_4$  0.1 M as supporting electrolyte.



**Figure SI 4.** Evolution of the LSW of **6b** (1mM) in the presence of increasing amounts of (a)  $Cd^{2+}$ ; (b)  $Zn^{2+}$ ; (c)  $Hg^{2+}$ ; (d)  $Pb^{2+}$ ; (e)  $Ni^{2+}$ ; (g)  $Cu^{2+}$ , obtained using a rotating disk electrode at 100 mVs<sup>-1</sup> and 1000 rpm and  $[(n-Bu)_4]ClO_4$  0.1 M as supporting electrolyte.



**Figure SI 5.** (a) Evolution of the OSWV of **6a** (1 mM) in  $CH_3CN/[(n-Bu)_4]ClO_4$  scanned at 0.1 V s<sup>-1</sup> in the presence of increasing amounts of (a)  $HP_2O_7^{-3-}$  (left) until 2 equiv and in the presence of 2 equiv of  $HP_2O_7^{-3-}$  and 20 equiv of acetic acid in  $CH_3CN$  (right); (b) F<sup>-</sup> (left) until 2 equiv and in the presence of 2 equiv of F<sup>-</sup> and 20 equiv of acetic acid in  $CH_3CN$  (right). (c) Evolution of the OSWV of **6a** (1 mM) in  $CH_3CN/[(n-Bu)_4]ClO_4$  scanned at 0.1 V s<sup>-1</sup> in the presence of increasing amounts of OH<sup>-</sup> until 2 equiv.



**Figure SI 6.** (a) Evolution of the OSWV of **6b** (1 mM) in  $CH_3CN/[(n-Bu)_4]ClO_4$ scanned at 0.1 V s<sup>-1</sup> in the presence of increasing amounts of (a)  $HP_2O_7^{-3-}$  (left) until 2 equiv and in the presence of 2 equiv of  $HP_2O_7^{-3}$  and 20 equiv of acetic acid in  $CH_3CN$ (right); (b) F<sup>-</sup> (left) until 2 equiv and in the presence of 2 equiv of F<sup>-</sup> and 20 equiv of acetic acid in  $CH_3CN$  (right). (c) Evolution of the OSWV of **6b** (1 mM) in  $CH_3CN/[(n-Bu)_4]ClO_4$  scanned at 0.1 V s<sup>-1</sup> in the presence of increasing amounts of OH<sup>-</sup> until 2 equiv.



**Figure SI 7.** Changes in the absorption spectra of **6a** ( $c = 1 \cdot 10^{-4}$  M in CH<sub>3</sub>CN) upon addition of increasing amounts of (a) Cd<sup>2+</sup>; (b) Zn<sup>2+</sup>; (c) Hg<sup>2+</sup>; (d) Pb<sup>2+</sup>; (e) Cu<sup>2+</sup> metal cation, until 1 equiv was added. Arrows indicate absorptions that increase or decrease during the experiment.



**Figure SI 8.** Changes in the absorption spectra of **6b** ( $c = 5 \cdot 10^{-5}$  M in CH<sub>3</sub>CN) upon addition of increasing amounts of (a) Cd<sup>2+</sup>; (b) Zn<sup>2+</sup>; (c) Hg<sup>2+</sup>; (d) Pb<sup>2+</sup>; (e) Ni<sup>2+</sup>;(d) Cu<sup>2+</sup> metal cation, until 1 equiv was added. Arrows indicate absorptions that increase or decrease during the experiment.



**Figure SI 9.** Changes in the absorption spectra of **6a** ( $c = 1 \cdot 10^{-4}$ M in CH<sub>3</sub>CN) upon addition of increasing amounts of (a) HP<sub>2</sub>O<sub>7</sub><sup>-3</sup> anion; (b) F<sup>-</sup> anion, until 2 equiv (left) and in the present of 20 equiv of acetic acid (right). (c) Changes in the absorption spectra of **6a** ( $c = 1 \cdot 10^{-4}$ M in CH<sub>3</sub>CN) upon addition of increasing amounts of (a) OH<sup>-</sup> anion. Arrows indicate absorptions that increase or decrease during the experiment.



**Figure SI 10.** Changes in the absorption spectra of **6b** ( $c = 1 \cdot 10^{-4}$ M in CH<sub>3</sub>CN) upon addition of increasing amounts of (a) HP<sub>2</sub>O<sub>7</sub><sup>-3</sup> anion; (b) F<sup>-</sup> anion, until 2 equiv (left) and in the present of 20 equiv of acetic acid (right). (c) Changes in the absorption spectra of **6b** ( $c = 1 \cdot 10^{-4}$ M in CH<sub>3</sub>CN) upon addition of increasing amounts of (a) OH<sup>-</sup> anion. Arrows indicate absorptions that increase or decrease during the experiment.



**Figure SI 11.** (a) Titration profile showing the change in absorbance of **6a** ( $c = 1 \cdot 10^{-4}$ M in CH<sub>3</sub>CN), at  $\lambda = 463$  nm, upon addition of Cd<sup>2+</sup>, indicating the formation of 2:1 complex. (b) Job's plot for **6a** (1x10<sup>-4</sup> M in CH<sub>3</sub>CN) and Zn<sup>2+</sup>, indicating the formation of a 2:1 complex. (c) Job's plot for **6a** (1x10<sup>-4</sup> M in CH<sub>3</sub>CN) and Hg<sup>2+</sup> (1x10<sup>-4</sup> M in CH<sub>3</sub>CN), indicating the formation of a 2:1 complex.



**Figure SI 12.** Job's plot for **6b** ( $1x10^{-4}$  M in CH<sub>3</sub>CN), and (a) Cd<sup>2+</sup>; (b) Zn<sup>2+</sup>; (c) Pb<sup>2+</sup>; (d) Ni<sup>2+</sup> ( $1x10^{-5}$  M in CH<sub>3</sub>CN), indicating the formation of 2:1 complexes.



**Figure SI 13.** Stepwise complexation [by addition of (a)  $Cd^{2+}$ ; (b)  $Zn^{2+}$ ; (c)  $Hg^{2+}$ ; (d)  $Pb^{2+}$ ]/decomplexation (extraction with  $H_2O$ ) cycles of ligand **6a** (c = 1x10<sup>-4</sup>M in CH<sub>2</sub>Cl<sub>2</sub>) carried out by UV/Vis analysis.



**Figure SI 14.** Stepwise complexation [addition of (a)  $Cd^{2+}$ ; (b)  $Zn^{2+}$ ; (c)  $Hg^{2+}$ ; (d)  $Pb^{2+}$ ; (e)  $Ni^{2+}$ ]/decomplexation (extraction with  $H_2O$ ) cycles of ligand **6b** (c =  $1x10^{-4}M$  in  $CH_2Cl_2$ ) carried out by UV/Vis analysis.



**Figure SI 15.** Absorbance of **6a** (c =  $1 \cdot 10^{-4}$ M in CH<sub>3</sub>CN) at each concentration of cation added (a) Cd<sup>2+</sup>; (b) Zn<sup>2+</sup>; (c) Hg<sup>2+</sup>; (d) Pb<sup>2+</sup>, normalized between the minimum absorbance, found at zero equiv of metal cation; and the maximum absorbance, found at (a)  $[Cd^{2+}]=1.72 \cdot 10^{-5}$  M; (b)  $[Zn^{2+}]=1.31 \cdot 10^{-5}$  M; (c)  $[Hg^{2+}]=1.15 \cdot 10^{-5}$  M; (d)  $[Pb^{2+}]=1.30 \cdot 10^{-5}$  M.



**Figure SI 16.** Absorbance of **6b** (c =  $1 \cdot 10^{-4}$ M in CH<sub>3</sub>CN) at each concentration of cation added (a) Cd<sup>2+</sup>; (b) Zn<sup>2+</sup>; (c) Hg<sup>2+</sup>; (d) Pb<sup>2+</sup>; (e) Ni<sup>2+</sup> normalized between the minimum absorbance, found at zero equiv of metal cation; and the maximum absorbance, found at (a)  $[Cd^{2+}]=1.50\cdot10^{-5}$  M; (b)  $[Zn^{2+}]=1.16\cdot10^{-5}$  M; (c)  $[Hg^{2+}]=1.25\cdot10^{-5}$  M; (d)  $[Pb^{2+}]=7.58\cdot10^{-6}$  M; (e)  $[Ni^{2+}]=9.74\cdot10^{-6}$  M.



**Figure SI 17.** Fluorescence intensity of ligand (a) **6a**; (b) **6b**, in CH<sub>3</sub>CN, after addition of 1 equiv of several cations. Emission monitored at (a)  $\lambda_{exc} = 330$  nm; (b)  $\lambda_{exc} = 310$  nm.



**Figure SI 18.** Changes in the fluorescence emission spectrum of **6a** ( $c = 1 \times 10^{-5}$  M in CH<sub>3</sub>CN) upon titration with Pb<sup>2+</sup>: the initial (black) is that of **6a** and the final one (deep cyan), after addition of 1.4 equiv of Pb<sup>2+</sup> ( $c = 2.5 \times 10^{-3}$  M in CH<sub>3</sub>CN). Emission is monitored at  $\lambda_{exc} = 330$  nm.



**Figure SI 19.** Changes in the fluorescence emission spectrum of **6b** ( $c = 1 \times 10^{-5}$  M in CH<sub>3</sub>CN) upon titration with Hg<sup>2+</sup>: the initial (black) is that of **6b** and the final one (deep blue), after addition of 1.2 equiv of Hg<sup>2+</sup> ( $c = 2.5 \times 10^{-3}$  M in CH<sub>3</sub>CN). Emission is monitored at  $\lambda_{exc} = 310$  nm.



**Figure SI 20.** Fluorescence intensity of (a) **6a**; (b) **6b**  $(1x10^{-5} \text{ M in CH}_3\text{CN})$ , at each concentration of (a)  $Pb^{2+}$ ; (b)  $Hg^{2+}$  added, normalized between the minimum fluorescence intensity, found at zero equiv of cation, and the maximum fluorescence intensity, found at (a)  $[Pb^{2+}] = 5.25x10^{-6} \text{ M}$ ; (b)  $[Hg^{2+}] = 1.81x10^{-6} \text{ M}$ .





**Figure SI 21.** Changes in the <sup>1</sup>H-NMR (in acetone- $d_6$ ) spectrum of **6a** (top) in acetone upon addition of increasing amounts of Cd<sup>2+</sup> until 0.6 equiv (bottom).



**Figure SI 22.** Changes in the <sup>1</sup>H-NMR (in acetone- $d_6$ ) spectrum of **6a** (top) in acetone upon addition of increasing amounts of  $Zn^{2+}$  until 1.0 equiv (bottom).



**Figure SI 23.** Changes in the <sup>1</sup>H-NMR (in acetone-d<sub>6</sub>) spectrum of **6a** (top) in acetone upon addition of increasing amounts of  $HP_2O_7^{3-}$  until 2.0 equiv (bottom).



**Figure SI 24.** Changes in the <sup>1</sup>H-NMR (in acetonitrile-d<sub>3</sub>) spectrum of **6b** (top) in acetone upon addition of increasing amounts of  $Pb^{2+}$  until 0.6 equiv (bottom).



**Figure SI 25.** Changes in the <sup>1</sup>H-NMR (in acetone- $d_6$ ) spectrum of **6b** (top) in acetone upon addition of increasing amounts of Ni<sup>2+</sup> until 0.6 equiv (bottom).



**Figure SI 26.** Changes in the <sup>1</sup>H-NMR (in acetonitrile- $d_3$ ) spectrum of **6b** (top) in acetone upon addition of increasing amounts of Cd<sup>2+</sup> until 1.0 equiv (bottom).





**Figure SI 27.** Changes in the <sup>1</sup>H-NMR (in acetone-d<sub>6</sub>) spectrum of **6b** (top) in acetone upon addition of increasing amounts of  $HP_2O_7^{3-}$  until 2.0 equiv (bottom).

Electronic Supplementary Information for Dalton Transactions This journal is o The Royal Society of Chemistry 2010



Figure SI 28. Relative abundance of the isotopic cluster for (a)  $6a_2 \cdot Cd^{2+}$ ; (b)  $6a_2 \cdot Zn^{2+}$ ; (c)  $6a_2 \cdot Hg^{2+}$ ; (d)  $6a_2 \cdot HP_2O_7^{3-}$  (top) simulated; (bottom) experimental.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010



**Figure SI 29.** Relative abundance of the isotopic cluster for (a)  $6b_2 \cdot Cd^{2+}$ ; (b)  $6b_2 \cdot Zn^{2+}$ ; (c)  $6c_2 \cdot Ni^{2+}$  (top) simulated; (bottom) experimental.