Supporting Information

Functions of LiBH₄ in the hydrogen sorption reactions of 2LiH-Mg(NH₂)₂ system

Jianjiang Hu¹, Eveline Weidner², M. Hoelzel³ and Maximilian Fichtner¹

¹Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe, Germany ²JRC Institute for Energy, Cleaner Energy Unit, Petten, the Netherlands ³Forschungs-Neutronequelle Heinz Maier-Leibnitz, Lichtenbergstrasse 1, 85747, Garching, Germany

Kissinger Plots for Mg(NH₂)₂-2LiH-0.3LiBH₄ and Mg(NH₂)₂-2LiH-0.67LiBH₄

Figure S1 Kissinger Plots for Mg(NH₂)₂-2LiH-0.3LiBH₄ and Mg(NH₂)₂-2LiH-0.67LiBH₄

Determination of transient activation energy

To determine the transient activation energy using the method described in the manuscript, dehydrogenation was performed at ramping rates $\beta_1 = 2$ °C/min and $\beta_2 = 5$ °C/min, respectively. In the time - conversion (t - α) (Figure S2) and temperature - conversion (T - α) (Figure S3) plots, the transient times (t_{1i} and t_{2i}) and temperature (T_{1i} and T_{2i}) at conversion α_i can be obtained via equations (1) and (2), corresponding to ramping rates β_1 and β_2 , respectively. The transient Ea can be calculated through equation (3).

$$t_{lik} = \frac{t_{li} + t_{lk}}{2} (l = 1, 2)$$
(1)

$$T_{lik} = \frac{T_{li} + T_{lk}}{2} (l = 1, 2)$$
(2)

$$E_{a} = R \frac{T_{1ik} T_{2ik}}{T_{2ik} - T_{1ik}} \ln \frac{\Delta t_{1}}{\Delta t_{2}}$$
(3)

Where t_{1i} and t_{1k} are times at the conversion degrees α_i and α_k for the heating rate β_1 ; T_{1i} and T_{1k} are the temperatures at the conversion degrees α_i and α_k for the heating rate β_2 ; T_{2i} and t_{2k} are times at the conversion degrees α_i and α_k for the heating rate β_2 ; T_{2i} and T_{2k} are the temperatures at the conversion degrees α_i and α_k for the heating rate β_2 ; T_{2i} and T_{2k} are the temperatures at the conversion degrees α_i and α_k for the heating rate β_2 ($\beta_2 > \beta_1$). The calculated activation energy from equation (3) corresponds to the conversion at

$$\alpha = \frac{\alpha_i + \alpha_k}{2} \tag{4}.$$

Figure S2 Conversion as a function of time at heating rates of $\beta_1 = 2$ °C/min and $\beta_2 = 5$ °C/min

Figure S3 Conversion as a function of temperature at heating rates of $\beta_1 = 2$ °C/min and $\beta_2 = 5$ °C/min

Estimation of crystallinity of Mg(NH₂)₂ in LiBH₄ doped samples

Figure S4 shows the crystallization heat effect of $Mg(NH_2)_2$ measured by DSC. Since the content of magnesium amide in the sample $Mg(NH_2)_2$ -2LiH-0.3LiBH₄ is 71.2 %, the crystallinity in this sample was estimated via the fraction of heat effect originated from the sample (-45.91 J/g as shown in Figure S4) divided by the crystallization enthalpy of $Mg(NH_2)_2$ (-140.0 J/g):

45.91/140/71.2% = 46.1%

Figure S4 Crystallization enthalpies measured by DSC for pure $Mg(NH_2)_2$ and mixture $Mg(NH_2)_2$ -2LiH-0.3LiBH₄

Crystallization of Mg(NH₂)₂ from amorphous state

Fig. S5 XRD profiles of $Mg(NH_2)_2$: as-prepared by ball milling MgH_2 with NH_3 (lower) and annealed at $310^{\circ}C$

FTIR spectra at various desorption stages

Figures S7 and S8 are the FTIR spectra for samples $Mg(NH_2)_2$ -2LiH-0.3LiBH₄ and $Mg(NH_2)_2$ -2LiH-0.67LiBH₄, respectively. It can be seen that the strong absorbance attributed to B-H stretching in the range 2100 – 2400 cm⁻¹ was not affected by different hydrogen desorption extent.

Figure S7 FTIR spectra of Mg(NH₂)₂-2LiH-0.3LiBH₄ heated to 140°, 154°, 173° and 200 °C

Figure S8 FTIR spectra of Mg(NH₂)₂-2LiH-0.67LiBH₄ heated to 130 °, 154 °, 173 ° and 200 °C

Preparation of Li₄(¹¹BD₄)(NH₂)₃ with high crystallinity

 $Li_4(^{11}BD_4)(NH_2)_3$ melts at about 220 °C, as shown in Figure S9 (red curve). In order to obtain $Li_4(^{11}BD_4)(NH_2)_3$ with high crystallinity, the ball milled mixture of $Li^{11}BD_4$ with $LiNH_2$ at 1:3 molar ratio was heated to 230 °C (just above its melting point) and kept at the temperature for 1 h, then cooled down slowly to room temperature. Figure S10 shows the strong diffraction intensity of annealed $Li_4(^{11}BD_4)(NH_2)_3$, compared to the as-milled product.

Figure S9 DSC curves of $Li_4(^{11}BD_4)(NH_2)_3$ from milled mixture of $Li^{11}BD_4$ with $LiNH_2$ at 1:3 molar ratio.

Two theta [degree] Figure S10 XRD patterns of $Li^{11}BD_4$, as-milled $Li_4(^{11}BD_4)(NH_2)_3$ and annealed $Li_4(^{11}BD_4)(NH_2)_3$.