KZn₄SbO₇ and KZn₄Sb₃O₁₂: Syntheses, Structures and Photophysics of Sb⁵⁺ Control Materials

Song-Lin Yang, Wen-Dan Cheng*, Hao Zhang, Chen-Sheng Lin, Wei-Long Zhang, Zhang-Zhen He

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Mater, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, China,

*E-mail: cwd@fjirsm.ac.cn (W.-D. Cheng)

Supporting Information

a: KZn₄SbO₇

b: KZn₄Sb₃O₁₂

Figure S1. Simulated and experimental XRD powder patterns for 1 (a) and 2 (b).

Figure S2. The calculated CIE chromaticity coordinates of (0.380, 0.440) and (0.310, 0.450) close to the coordinates of white-light emission for KZn₄SbO₇ and KZn₄Sb₃O₁₂.

Figure S3. The band structures of plots. The lowest conduction band is at G-point and the highest valence band at F-point for $KZn_4Sb_3O_{12}$ crystal; both the lowest conduction band and highest valence band are at G-point for KZn_4SbO_7 , ZnO and Sb_2O_5 crystals.