Submitted to Dalton Transactions Version: Jul 13, 2010

Gas–Phase Synthesis and Reactivity of Dimethylaurate

Nicole J. Rijs,^{a-c} Gustavo B. Sanvido,^{a-d} George N. Khairallah, ^{a-c} and Richard A. J. O'Hair* ^{a-c}

Supporting Information

Complete citation for reference 19: Gaussian 03, Revision B.04, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Suppo	orting Information:	
	Contents	2
S1	ESI/MS of gold(III) acetate, Table S1	3
S2	Mass spectra showing the formation of $[CH_3AuCH_3]^-$ via a series of collision induced dissociation experiments (CID): (a) MS ² CID spectrum of $[(CH_3CO_2)_4Au]^-$, m/z 433; (b) MS ³ CID spectrum of $[CH_3CO_2AuO_2CCH_3]^-$, m/z 315; (c) MS ⁴ CID spectrum of $[CH_3CO_2AuCH_3]^-$, m/z 271. The mass selected precursor ion is marked with an * in each case.	4
S3	Calculated Cartesian coordinates and energies for species relevant to the fragmentation of $[(CH_3CO_2)_4Au]^-$	5
S4	Calculated Cartesian coordinates and energies for species relevant to the fragmentation of [CH ₃ CO ₂ AuO ₂ CCH ₃] ⁻ and [CH ₃ CO ₂ AuCH ₃] ⁻	6
S5	Calculated Cartesian coordinates and energies relevant to [CH ₃ AuCH ₃] ⁻ fragmentation.	7
S6	Calculated Cartesian coordinates and energies for [CH ₃ AuCH ₃] ⁻ reaction with CH ₃ I.	8
S7	Calculated Cartesian coordinates and energies (Hartrees) for key transition state geometries of $[CH_3CuCH_3]^ [CH_3AgCH_3]^-$ reaction with CH_3I ; bond length comparison of S_N2 linear geometry for M = Cu, Ag, Au	9
S8	Comparison of $CH_3MCH_3^-$ (M= Cu and Ag) reaction with CH_3I at B3LYP.	10
S9	Comparison of experimental vs computed bond lengths and geometries.	11
S10	Comparison of computational methods and basis sets.	12
S11	Intensity comparison at different q values and reaction times: trapped [CH ₃ CO ₂ AuCH ₃] ⁻ versus its CID fragments	14

Figure S1: ESI/MS of gold(III) acetate (1mM) dissolved in water a) fresh sample; b) sample after 2 hours; and methanol:water (50:50 v/v) c) fresh sample; d) sample after 2 hours.

m/z	Assignment
307	[CH ₃ CO ₂ Au(OH) ₃] ⁻
349	$[(CH_3CO_2)_2Au(OH)_2]^{-}$ or $[CH_3CO_2Au(OCH_3)_3]^{-}$
377	$[(CH_3CO_2)_2Au(OCH_3)_2]^{-1}$
391	[(CH ₃ CO ₂) ₃ AuOH] ⁻
405	[(CH ₃ CO ₂) ₃ AuOCH ₃] ⁻
433	[(CH ₃ CO ₂) ₄ Au] ⁻

Table S1: Ions formed via ESI.

Figure S2: Mass spectra showing the formation of $[CH_3AuCH_3]^-$ via a series of collision induced dissociation experiments (CID): (a) MS² CID spectrum of $[(CH_3CO_2)_4Au]^-$, m/z 433; (b) MS³ CID spectrum of $[CH_3CO_2AuO_2CCH_3]^-$, m/z 315; (c) MS⁴ CID spectrum of $[CH_3CO_2AuCH_3]^-$, m/z 271. The mass selected precursor ion is marked with an * in each case. 4

[(CH₃CO₂)₄Au]⁻C_{2v}

Au	79.0	0.00027000	-0.00032900	0.00000000
С	6.0	-1.94446301	1.93390298	0.96314001
С	6.0	-1.93495703	-1.94420099	-0.96274000
С	6.0	1.93475997	1.94440103	-0.96262801
0	8.0	-1.64174104	1.62454295	2.10869908
0	8.0	-1.43754101	1.43592894	-0.14566900
0	8.0	1.43671000	1.43724799	0.14605001
0	8.0	1.62586200	1.64153802	-2.10825896
0	8.0	1.64193499	-1.62640095	2.10789108
0	8.0	1.43844700	-1.43613505	-0.14639100
0	8.0	-1.43570101	-1.43838203	0.14600800
0	8.0	-1.62656796	-1.64063895	-2.10832405
С	6.0	-2.99412990	-3.00165296	-0.65042102
н	1.0	-2.55955410	-3.80020809	-0.03879200
н	1.0	-3.81059790	-2.55445504	-0.07224800
н	1.0	-3.38387609	-3.41700792	-1.58300698
С	6.0	-3.00486898	2.99018407	0.65099603
н	1.0	-3.81621599	2.54434299	0.06460500
н	1.0	-3.40199900	3.39799404	1.58380198
н	1.0	-2.56886196	3.79415607	0.04756700
С	6.0	2.98966908	3.00605202	-0.65009302
н	1.0	2.53803205	3.82424688	-0.07770000
н	1.0	3.78617311	2.57594991	-0.03278900
н	1.0	3.40798092	3.39305997	-1.58249497
С	6.0	1.94546700	-1.93448901	0.96221799
С	6.0	3.00617504	-2.99028897	0.64952803
н	1.0	2.56886697	-3.79631090	0.04972600
н	1.0	3.81511211	-2.54538703	0.05915500
Н	1.0	3.40649700	-3.39543104	1.58212197

Au	79.0	0.21650700	-0.00405900	-0.00324000
С	6.0	-2.65466309	3.06007910	-0.44248101
н	1.0	-2.54190207	3.20748711	-1.51987398
н	1.0	-3.61198807	2.55490804	-0.26978299
н	1.0	-2.65777397	4.02008104	0.07791300
С	6.0	-2.71042705	-3.01139498	0.45929900
н	1.0	-2.59007907	-3.16372609	1.53518403
н	1.0	-3.65875912	-2.48612189	0.29724699
н	1.0	-2.73857999	-3.96985292	-0.06318600
С	6.0	4.20589304	-0.01785000	0.01827900
н	1.0	4.59609985	0.55126202	-0.82916403
н	1.0	4.53894520	0.46753499	0.94398302
н	1.0	4.58712006	-1.04186904	0.00693900
С	6.0	-1.53644204	2.19886994	0.11700100
С	6.0	2.71536708	-0.02336100	-0.00964400
С	6.0	-1.58033097	-2.17200398	-0.10951200
0	8.0	2.04231095	0.94924700	-0.50869000
0	8.0	2.03005695	-0.98944497	0.48531899
0	8.0	-0.98917103	2.38872695	1.19084299
0	8.0	-1.23894501	1.19416296	-0.71043903
0	8.0	-1.25395799	-1.17575002	0.71728301
•8.0	-1.0	04823101 -2.3	37007594 -1.1	18943202

ઃન્

[(CH₃CO₂)₃Au]

•Sum of electronic and zero-point Energies = -821.053037

ૻૡૼૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	-
6	

[CH₃CO₂MeO₂CH₃]⁻

0	8.0	1.12844300	-1.17209101	-0.80468601
0	8.0	0.65623200	0.29733101	0.88501799
0	8.0	-0.65623099	-0.29735401	0.88501102
0	8.0	-1.12844205	1.17211199	-0.80466002
С	6.0	-2.81507611	-0.40178901	-0.02177500
н	1.0	-2.81130290	-1.21404600	-0.75765800
н	1.0	-3.02454710	-0.82642299	0.96284199
н	1.0	-3.58723402	0.31888899	-0.30008000
С	6.0	1.47317803	-0.28677699	-0.06953700
С	6.0	2.81507492	0.40178701	-0.02176600
н	1.0	2.81135702	1.21394897	-0.75775498
н	1.0	3.02448606	0.82655102	0.96280801
н	1.0	3.58724499	-0.31893101	-0.29993099

Sum of electronic and zero-point Energies = -456.779641

Sum of electronic and zero-point Energies = -1049.623871

Figure S3: Calculated Cartesian coordinates and energies (Hartrees) for species relevant to the fragmentation of $[(CH_3CO_2)_4Au]^-$

[CH₃CO₂AuO₂CCH₃]⁻

С	6.0	-2.96340895	-0.16013899	-0.00089400
С	6.0	-4.30895805	0.57811701	0.00116900
0	8.0	-1.95624304	0.66709101	-0.00067400
0	8.0	-2.92190099	-1.39311898	-0.00109700
н	1.0	-4.38517189	1.21433794	0.89126199
н	1.0	-5.13524580	-0.13804300	-0.01012900
н	1.0	-4.37785387	1.23563004	-0.87378103
С	6.0	2.96340704	0.16014700	0.00001500
С	6.0	4.30895901	-0.57810700	0.00045700
0	8.0	2.92189002	1.39312696	-0.00093600
0	8.0	1.95624804	-0.66709000	0.00088200
н	1.0	5.13526392	0.13811900	0.00272900
н	1.0	4.38257313	-1.22322595	-0.88338202
н	1.0	4.38042784	-1.22681701	0.88179499
Au	79.0	0.00000100	-0.00000200	0.00002100
Sum of electronic and zero-point Energies = -592.784884				

TS $[CH_3CO_2AuCH_3]^- \rightarrow [CH_3AuCH_3]^- + CO_2 (-341 \text{ cm}^{-1})$

Au	79.0	0.50680703	0.09676400	-0.00000300
С	6.0	2.40405989	-0.72521198	0.00006000
0	8.0	-2.31946802	-0.76111501	1.15023899
С	6.0	-2.08299994	-0.43602800	0.00001300
0	8.0	-2.31934190	-0.76138502	-1.15016401
С	6.0	-1.42029297	1.44550800	-0.00010200
н	1.0	-1.05092800	1.93434095	-0.91175097
н	1.0	-2.50490189	1.60551906	-0.00034300
н	1.0	-1.05128896	1.93432105	0.91169697
Н	1.0	2.55204201	-1.34820104	0.89324403
н	1.0	2.54895711	-1.35523498	-0.88868302
Н	1.0	3.17428207	0.05925800	-0.00437000

Sum of electronic and zero-point Energies = -404.137166

CH₃C	0 ₂ -
------	------------------

0	8.0	0.70457202	1.16242397	0.00002000
õ	8.0	0.80539101	-1.11075401	0.00002000
С	6.0	0.20919301	0.00116600	-0.00009800
С	6.0	-1.35404205	-0.04939700	-0.00004100
н	1.0	-1.72823596	-1.08034205	-0.00285600
н	1.0	-1.74091601	0.47551799	0.88480002
Н	1.0	-1.74146199	0.48085099	-0.88142800

Sum of electronic and zero-point Energies = -228.487580

[CH	₃Au]	•
-----	------	---

Au	79.0	-0.23313800	0.00000100	0.00000000
С	6.0	1.92640996	0.00000400	-0.00000100
н	1.0	2.28639007	-0.41409799	0.95212299
н	1.0	2.28643298	-0.61756700	-0.83462900
н	1.0	2.28664899	1.03154802	-0.11746100
Sum of electronic and zero-point Energies = -175.672986				

•

TS $[CH_3CO_2AuO_2CCH_3]^- \rightarrow [CH_3CO_2AuCH_3]^- + CO_2 (-338 \text{cm}^{-1})$

Au	79.0	0.11505100	0.09118800	-0.01150100
0	8.0	-1.76429403	-0.78206003	-0.09157700
С	6.0	-2.81187201	-0.00865000	0.00709100
0	8.0	-2.81764197	1.21767700	0.13290900
С	6.0	-4.11904907	-0.80582303	-0.04093400
н	1.0	-4.17137003	-1.48087704	0.82168800
Н	1.0	-4.97597980	-0.12741300	-0.02617000
н	1.0	-4.15061188	-1.42817199	-0.94245398
0	8.0	3.10008597	-0.85848701	-1.01708198
С	6.0	2.70456910	-0.39400399	0.05620200
0	8.0	2.74215102	-0.75137401	1.24211299
С	6.0	2.15248609	1.24751997	-0.13708200
н	1.0	1.39704704	1.77924705	0.49133399
н	1.0	3.07279611	1.64844799	0.30190399
н	1.0	2.09985304	1.56463599	-1.18026805

Sum of electronic and zero-point Energies = -592.718659

[CH₃AuCH₃]⁻					
Au	79.0	0.00000000	0.00010900	-0.00013700	
С	6.0	-2.12720299	-0.00040400	0.00052500	
н	1.0	-2.53713489	-0.36932200	0.95716602	
н	1.0	-2.53817892	1.01211405	-0.15818900	
Н	1.0	-2.53784704	-0.64466500	-0.79670697	
С	6.0	2.12720299	-0.00040500	0.00052500	
н	1.0	2.53817797	1.01211500	-0.15818700	
н	1.0	2.53713489	-0.36932299	0.95716500	
н	1.0	2.53784704	-0.64466399	-0.79670900	

Sum of electronic and zero-point Energies = -215.585267

[CH₃CO₂AuCH₃]⁻

Au	79.0	-0.67999297	-0.07546600	0.00002700
0	8.0	1.40479100	-0.62586600	0.00076700
С	6.0	2.38917994	0.21059801	0.00038200
0	8.0	2.33777690	1.44981205	0.00013900
С	6.0	3.76233912	-0.49057701	-0.00057800
н	1.0	3.85434508	-1.13050401	-0.88739902
н	1.0	4.57253504	0.24510300	0.00573000
н	1.0	3.85043502	-1.14235103	0.87789899
С	6.0	-2.69337392	0.31615800	-0.00051400
Н	1.0	-2.88921189	1.35727000	-0.29861900
Н	1.0	-3.22941399	-0.34149900	-0.70194799
н	1.0	-3.12864304	0.16514800	0.99926001

Sum of electronic and zero-point Energies = -404.197803

0

co	2			
C 0 0	6.0 8.0 8.0	0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000	0.00000000 1.16979396 -1.16979396

Sum of electronic and zero-point Energies = -188.57585

[CH ₃ CO ₂ Au]					
С	6.0	1.95726800	0.13221800	-0.00034900	
С	6.0	3.39722300	-0.36717600	-0.00000600	
0	8.0	1.08345997	-0.85304701	-0.00025200	
0	8.0	1.66684496	1.32613504	-0.00006700	
н	1.0	3.57797289	-0.97818601	0.89024198	
н	1.0	4.07762289	0.48575699	-0.01111200	
н	1.0	3.57312489	-0.99909002	-0.87629801	
Au	79.0	-0.82731801	-0.01118300	0.00002300	

Sum of electronic and zero-point Energies = -364.190197

[CH,CO,Au].-

С	6.0	-2.20323205	0.14356600	-0.00029600
С	6.0	-3.59156895	-0.53700000	0.00022500
0	8.0	-1.23603296	-0.70928401	-0.00048500
0	8.0	-2.13788295	1.38260198	-0.00006700
н	1.0	-3.69090295	-1.18486297	-0.87968600
н	1.0	-4.38802624	0.21389900	-0.00469800
н	1.0	-3.69391394	-1.17566299	0.88656700
Au	79.0	0.93079698	-0.01113100	0.00003400

Sum of electronic and zero-point Energies = -364.277241

[CH₃Au]

Au	79.0	0.22006799	0.00000000	0.00000000
С	6.0	-1.82346404	-0.00000100	-0.00001000
н	1.0	-2.14818501	0.99234599	-0.32082400
н	1.0	-2.14819193	-0.77404600	-0.69889098
н	1.0	-2.14820290	-0.21829100	1.01976299

Sum of electronic and zero-point Energies = -175.647426

Me.	, j	0		
C H H H	6.0 1.0 1.0 1.0	0.00000400 1.07251894 -0.40299401 -0.66954798	-0.00000200 -0.15388601 1.00575805 -0.85185802	-0.00001800 0.00003600 0.00003600 0.00003600
Sun	n of e	ectronic and ze	ero-point Energ	ies = -39.811971
	૾ૢૺૢ			
Me-	-			
C H H H	6.0 1.0 1.0 1.0	-0.00008700 0.51700997 0.52777100 -1.04426003	-0.0000200 0.90736097 -0.90114200 -0.00620700	0.12094500 -0.24182799 -0.24183100 -0.24201100

Sum of electronic and zero-point Energies = -39.811839

Figure S4: Calculated Cartesian coordinates and energies (Hartrees) for species relevant to the fragmentation of [CH₃CO₂AuO₂CCH₃]⁻ and [CH₃CO₂AuCH₃]⁻.

6

TS $[CH_3AuCH_3]^- \rightarrow [CH_3CH_2AuH]^- (-117 \text{ cm}^{-1})$

Au	79.0	-0.26557499	-0.09935900	-0.00294700
н	1.0	1.75050604	1.76833797	-0.17594500
н	1.0	0.44400400	2.19124603	0.90722299
н	1.0	-1.94596601	0.07437000	0.05653200
С	6.0	1.76045406	-0.75286299	0.02710400
н	1.0	2.30145502	-0.43307701	0.92622900
н	1.0	1.70560300	-1.85382497	0.02617300
н	1.0	2.31660104	-0.41992000	-0.85871202

Sum of electronic and zero-point Energies = -215.493737

[CH₃CH₂AuH]⁻

Au	79.0	0.45343000	-0.01650400	-0.00000800
С	6.0	-1.58419096	0.66687697	-0.00001000
н	1.0	-1.74387097	1.31839204	0.87817103
н	1.0	-1.74375403	1.31800699	-0.87849700
С	6.0	-2.66783190	-0.43148601	0.00016200
н	1.0	-2.57749391	-1.08487701	-0.88002503
н	1.0	-2.57767105	-1.08442104	0.88070601
н	1.0	-3.70459890	-0.03526400	-0.00004500
н	1.0	2.03857589	-0.54039800	-0.00059900
Sun	n of el	ectronic and zer	ro-point Energie	es = -215.578504

TS $[CH_3CH_2AuH]^- \rightarrow [HAuH]^- + C_2H_4 (-577 \text{ cm}^{-1})$

Au	79.0	-0.43505099	-0.00698700	-0.00000200
н	1.0	-1.90572298	0.57692999	-0.00004900
С	6.0	2.25933003	0.80757898	-0.00005200
С	6.0	2.10297608	-0.66780502	0.00006200
н	1.0	2.01094294	1.34616804	-0.91671300
н	1.0	2.01093197	1.34631205	0.91652101
н	1.0	1.01488495	-1.27063501	0.00010000
н	1.0	2.53205204	-1.14263701	0.89122099
н	1.0	2.53206491	-1.14277601	-0.89101601

Sum of electronic and zero-point Energies = -215.493737

7

[HAuH]

Au	79.0	0.00000000	0.00000000	0.00000000
Н	1.0	0.00000000	0.00000000	1.68150496
н	1.0	0.00000000	0.00000000	-1.68151498
Sum of electronic and zero-point Energies = -137.012661				

 C_2H_4

С	6.0	-0.66759598	0.00000000	-0.00016000
С	6.0	0.66759300	0.00000000	-0.00019000
н	1.0	-1.24046302	0.92477602	0.00050000
н	1.0	-1.24046397	-0.92477602	0.00050000
н	1.0	1.24047303	-0.92476797	0.00054900
н	1.0	1.24047303	0.92476797	0.00054900

Sum of electronic and zero-point Energies = -78.540582

Triplet CH₃Au(CH₂)H⁻

Au	79.0	-0.07623100	-0.24994500	-0.00044700
С	6.0	-1.19329202	1.59079695	0.00007500
н	1.0	-0.67845601	2.55840898	-0.03212900
н	1.0	-2.28687310	1.61546004	0.03325300
н	1.0	-1.45645905	-1.18979394	0.00140700
С	6.0	1.83981800	0.73816401	0.00210600
н	1.0	2.03737998	1.18722904	0.98865700
н	1.0	2.67039204	0.05147200	-0.22608399
н	1.0	1.85711503	1.54911900	-0.74289900

Sum of electronic and zero-point Energies= -215.457801

Figure S5: Calculated Cartesian coordinates and energies (Hartrees) relevant to [CH₃AuCH₃] fragmentation.

0.00000100

-0.33378500 -0.00000100

Sum of electronic and zero-point Energies = -51.291937

CH₃I

1 53.0

 •	

[CH₃AuCH₃]-(CH₃I) T-shaped precomplex

С	6.0	1.91112399	2.13354707	-0.00011500
н	1.0	1.38370204	2.52647710	-0.88664800
н	1.0	2.91966200	2.58131409	-0.00382000
н	1.0	1.38975298	2.52681398	0.88980103
Au	79.0	2.01373506	0.00880100	0.00001800
1	53.0	-3.49719000	-0.01608600	-0.00003700
С	6.0	2.13766599	-2.11370611	-0.00013300
С	6.0	-1.23445404	-0.00271500	0.00030800
н	1.0	1.64977598	-2.56019497	0.88337100
н	1.0	3.18775892	-2.45302296	0.00742000
н	1.0	1.66297698	-2.55903912	-0.89139599
н	1.0	-0.93483299	-0.54199201	-0.89190501
н	1.0	-0.94341999	1.04183996	-0.01924600
н	1.0	-0.93544602	-0.50770599	0.91257101
Su	m of el	ectronic and ze	ro-point Energi	es = -266.888910

Post complex [(CH₃)₃Au](I⁻)

С	6.0	1.98001301	2.12398410	-0.00239400
н	1.0	1.32644999	2.56095695	-0.76965898
н	1.0	3.00970888	2.46105409	-0.20606799
н	1.0	1.67886901	2.53546405	0.97153902
Au	79.0	1.90132499	0.00000000	-0.00261900
1	53.0	-3.44888711	-0.00000200	-0.00342400
С	6.0	1.98003101	-2.12398195	-0.00239400
С	6.0	-0.27705300	0.00000300	0.04868700
н	1.0	1.67886996	-2.53546596	0.97153300
Н	1.0	3.00973392	-2.46104693	-0.20604800
н	1.0	1.32648599	-2.56095910	-0.76967299
н	1.0	-0.51584798	-0.91807199	0.57211798
н	1.0	-0.51004899	0.00008500	-1.01102197
н	10	-0 51584101	0.91800302	0 57225502

Sum of electronic and zero-point Energies = -266.885708

тs	[(CH ₂)	"Au](⊢) → CH,	CH, + CH,Au	+ I⁻ (-307 cm ⁻¹)
С	6.0	4.07239199	-0.0ઁ56104ઁ00	-0.45413399
н	1.0	4.65237617	-0.50262600	0.36471701
н	1.0	4.45929193	0.95795798	-0.62475699
н	1.0	4.25737190	-0.64211297	-1.36426699
Au	79.0	2.02793908	0.00368800	0.00540600
С	6.0	0.15156800	1.11306798	0.41170600
С	6.0	0.13295101	-1.05025804	0.47107601
н	1.0	-0.52465701	1.17580402	-0.43754601
н	1.0	0.81871599	1.98625600	0.46329501
н	1.0	-0.40973300	1.02246594	1.33807802
н	1.0	-0.90987003	-0.83283401	0.23547700
н	1.0	0.25772601	-1.29840004	1.52551496
н	1.0	0.49576500	-1.85009003	-0.18644500
L	53.0	-3.76312494	-0.00656600	-0.08137800
Su	m of el	ectronic and ze	ro-point Energie	es = -266.870577

-0

TS $[CH_3AuCH_3]^- + CH_3I \rightarrow [(CH_3)_3Au](I)^- (-248 \text{ cm}^{-1})$

С	6.0	-1.91930497	-2.12631893	-0.00036000
н	1.0	-1.27221203	-2.56089902	-0.77810299
н	1.0	-2.94374800	-2.48840809	-0.18717900
н	1.0	-1.59753394	-2.54285908	0.96749699
Au	79.0	-1.86643004	0.00000000	-0.00137800
1	53.0	3.32816505	0.00000000	-0.00324500
С	6.0	-1.91930199	2.12631989	-0.00035900
С	6.0	0.63937598	-0.00000100	0.03205200
н	1.0	-1.59753001	2.54285908	0.96749800
Н	1.0	-2.94374490	2.48841000	-0.18717700
н	1.0	-1.27220905	2.56089902	-0.77810198
Н	1.0	0.63200098	0.93480200	0.56688702
Н	1.0	0.61355698	0.00000200	-1.04536498
н	1.0	0.63200098	-0.93480599	0.56688303

Sum of electronic and zero-point Energies = -266.883406

[CH₃AuCH₃]-(CH₃I) SN2 pre-complex

С	6.0	4.99471521	0.00014200	-0.00028300
н	1.0	5.40157223	-0.85288000	-0.56966901
н	1.0	5.40263796	-0.06628800	1.02277005
н	1.0	5.40180397	0.91944301	-0.45482600
Au	79.0	2.87326002	0.00003600	0.00008500
1	53.0	-4.83358002	-0.00008200	-0.00002400
С	6.0	0.73984098	-0.00106500	-0.00041500
С	6.0	-2.59874701	0.00114600	0.00027600
н	1.0	0.34405601	-0.08255300	1.02620804
н	1.0	0.34500799	-0.84984201	-0.58427399
н	1.0	0.34382799	0.92840397	-0.44367200
н	1.0	-2.28666711	-0.93300998	0.45672500
н	1.0	-2.28704596	0.07282300	-1.03700304
н	1.0	-2.28783798	0.86411500	0.58076698

Sum of electronic and zero-point Energies = -266.885367

6 ¢ ۰ŏ

TS $[CH_3AuCH_3]^- + CH_3I \rightarrow CH_3CH_3 + CH_3Au + I^- (-448 \text{ cm}^{-1})$

С	6.0	4.81577921	-0.04215200	0.00015000
н	1.0	5.22769785	0.97684401	-0.03692200
н	1.0	5.19276905	-0.59696400	-0.87138599
н	1.0	5.19399786	-0.53258902	0.90896702
Au	79.0	2.71983790	0.00195400	-0.00003000
1	53.0	-4.64594793	-0.00809300	-0.00000400
С	6.0	0.48648900	0.04021400	-0.00001100
С	6.0	-1.87853801	0.03465500	0.00012300
н	1.0	0.29558399	-0.50190902	-0.92406797
н	1.0	0.30869699	1.11380696	-0.00931300
н	1.0	0.29576200	-0.48579100	0.93335599
н	1.0	-1.90082002	0.56600600	-0.93552703
н	1.0	-1.90091002	0.57990801	0.92775202
н	1.0	-1.88706601	-1.04103899	0.00816600

Sum of electronic and zero-point Energies = -266.869912

Post complex (CH₃CH₃)[CH₃Au](I⁻)

	.p.o. (0303)	[01:3, (0](.)	
6.0	4.35233116	-0.57456303	0.06274800
1.0	4.94303417	0.23699801	-0.37578100
1.0	4.52333212	-1.49922395	-0.49889499
1.0	4.64587688	-0.71997899	1.10812902
79.0	2.36741400	-0.09278500	-0.01933200
53.0	-4.15506315	-0.24219100	-0.00518500
6.0	-0.25063699	0.68099099	0.17828301
6.0	-0.52089298	2.17059398	-0.03662000
1.0	0.45115101	0.29401800	-0.61445898
1.0	0.12294800	0.47285399	1.18896306
1.0	-1.16032100	0.08057800	0.03830400
1.0	0.37117901	2.78372788	0.14309500
1.0	-1.31587303	2.49639702	0.64265102
1.0	-0.87352800	2.35863709	-1.05646300
m of el	ectronic and ze	ro-point Energie	es = -266.938649
	6.0 1.0 1.0 79.0 53.0 6.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0 m of el	6.0 4.35233116 1.0 4.94303417 1.0 4.52333212 1.0 4.64587688 79.0 2.36741400 53.0 -4.15506315 6.0 -0.25063699 6.0 -0.52089298 1.0 0.45115101 1.0 0.425115101 1.0 0.12294800 1.0 -1.16032100 1.0 -1.31587303 1.0 -0.87352800 m of electronic and ze	6.0 4.35233116 -0.57456303 1.0 4.94303417 0.23699801 1.0 4.52333212 -1.49922395 1.0 4.64587688 -0.71997899 79.0 2.36741400 -0.09278500 53.0 -4.15506315 -0.24219100 6.0 -0.25063699 0.68099099 6.0 -0.52089298 2.17059398 1.0 0.45115101 0.29401800 1.0 0.45215101 0.28057800 1.0 0.45215700 2.78372788 1.0 -1.31587303 2.49639702 1.0 -0.87352800 2.35863709 m of electronic and zero-point Energin 1.942120

÷ģ	ď.
0	ò

СН₃СН₃

С	6.0	-0.76627702	0.00000000	0.00000000
C .	6.0	0.76627702	0.00000000	0.00000000
н	1.0	-1.16515994	-0.97165197	-0.31555399
н	1.0	-1.16513097	0.21253499	0.99926299
н	1.0	-1.16517496	0.75911099	-0.68367797
н	1.0	1.16517496	-0.75910997	0.68367898
н	1.0	1.16513097	-0.21253701	-0.99926299
н	1.0	1.16515994	0.97165298	0.31555200
Sur	n of e	lectronic and ze	ero-point Energi	ies = -79.757233

8

Figure S6: Calculated Cartesian coordinates and energies (Hartrees) for [CH₃AuCH₃]⁻ reaction with CH₃I.

-328.443145

С	6.0	2.73568296	-1.96027100	0.00781800
н	1.0	2.12631011	-2.42473197	0.80096298
н	1.0	3.78235102	-2.27281189	0.17682700
н	1.0	2.41738009	-2.40524697	-0.95066601
Cu	29.0	2.62529612	0.00000200	0.00095300
1	53.0	-2.41072607	-0.00000100	0.00330400
С	6.0	2.73566389	1.96027601	0.00781800
С	6.0	0.21537800	-0.00000900	-0.04014500
н	1.0	2.41735196	2.40525007	-0.95066398
Н	1.0	3.78233004	2.27283001	0.17682201
н	1.0	2.12629008	2.42473006	0.80096602
н	1.0	0.27856401	0.93447697	-0.57233697
Н	1.0	0.30543101	0.00000100	1.03473794
н	1.0	0.27856100	-0.93450701	-0.57231897

Sum of electronic and zero-point Energies=

TS [CH₃AgCH₃]⁻ + CH₃I \rightarrow [(CH₃)₃Ag](I)⁻ (143cm⁻¹)

С	6.0	-2.39977288	-2.14434099	-0.00341900
Н	1.0	-1.73186600	-2.57898402	-0.76081401
Н	1.0	-3.42581201	-2.48217702	-0.22272100
Н	1.0	-2.11220193	-2.55396891	0.97643900
A	g 47.0	-2.33371210	0.00000000	-0.00280200
L	53.0	2.87694001	0.00000000	-0.00314600
С	6.0	-2.39977002	2.14434195	-0.00341900
С	6.0	0.03738900	-0.00000100	0.04081600
Н	1.0	-2.11220002	2.55396891	0.97643900
Н	1.0	-3.42580891	2.48217893	-0.22272100
Н	1.0	-1.73186302	2.57898402	-0.76081401
Н	1.0	0.11167400	0.93460500	0.57269198
Н	1.0	0.09598600	0.00000600	-1.03664696
Н	1.0	0.11167400	-0.93461502	0.57267898

Sum of electronic and zero-point Energies= -278.084215

 $\textbf{TS}~\textbf{[(CH_3)_3Cu](I^-) \rightarrow CH_3CH_3 + CH_3CuI^-~(-389~\text{cm}^{-1})}$

С	6.0	-1.71348298	2.12873912	-0.13130300
н	1.0	-2.79977393	2.32387590	-0.08477500
н	1.0	-1.31871605	2.65332294	-1.01627696
н	1.0	-1.25087202	2.60268402	0.74928099
Cu	29.0	-1.25903499	0.19187599	-0.15705900
С	6.0	-1.41317701	-1.75544500	-0.63310498
С	6.0	-2.62392306	-0.87030900	0.86936402
н	1.0	-0.74515402	-2.39544511	-0.05750700
н	1.0	-0.89173299	-1.37777805	-1.53088105
н	1.0	-2.32376409	-2.27223992	-0.94168401
н	1.0	-2.61614490	-1.88775504	1.26434505
н	1.0	-3.57925010	-0.64147002	0.39329100
н	1.0	-2.42140102	-0.17124000	1.69024396
1	53.0	1.67853498	-0.02672200	0.06526300

Sum of electronic and zero-point Energies=

TS [(CH₃)₃Ag](I⁻) → CH₃CH₃ + CH₃AgI⁻ (-472 cm⁻¹)

С	6.0	-1.56784594	2.31952095	-0.05083000
Н	1.0	-2.64840293	2.51289201	-0.15234099
н	1.0	-1.04503000	2.84966612	-0.85938698
Н	1.0	-1.23065400	2.75433803	0.90190899
Ag	47.0	-1.08966303	0.19703899	-0.08110800
С	6.0	-1.23741603	-2.05565095	-0.32992199
С	6.0	-2.91931295	-0.99147201	0.49380299
Н	1.0	-0.79885602	-2.52615690	0.54958200
н	1.0	-0.46435300	-1.85400903	-1.08080494
н	1.0	-2.02682996	-2.66184592	-0.77228200
Н	1.0	-3.01705003	-1.91742694	1.05999994
н	1.0	-3.59304500	-0.97655898	-0.36288199
н	1.0	-3.12631512	-0.14672500	1.15700400
1	53.0	1.95306003	-0.05527200	0.05081100

Sum of electronic and zero-point Energies= -278.071524

	ų.		
- à 4		- X	
33	0		•

TS $[CH_3CuCH_3]^- + CH_3I \rightarrow CH_3CH_3 + CH_3Cu + I^- (-406 \text{ cm}^{-1})$

С	6.0	-5.80970812	-0.04270500	-0.00007700
н	1.0	-6.20096111	-0.51953697	0.91435200
н	1.0	-6.19831181	-0.61162901	-0.86142999
н	1.0	-6.23859596	0.97203797	-0.05332000
Сι	29.0	-3.86458111	0.00463200	0.00004400
1	53.0	3.32069397	-0.00803900	-0.00000600
С	6.0	-1.83204901	0.04334800	-0.00005600
С	6.0	0.61508399	0.03439900	0.00005900
н	1.0	-1.62472796	-0.48484999	-0.93148899
н	1.0	-1.62484205	-0.49625400	0.92483199
н	1.0	-1.63693404	1.11634696	0.00645200
н	1.0	0.57579201	-1.04044700	-0.00543900
н	1.0	0.59238100	0.56820703	0.93407899
н	1.0	0.59231001	0.57760501	-0.92853200

-328.439597 Sum of electronic and zero-point Energies=

-328.431602

ૢ૽૱૱ૡૢૼ૾ૡ૾ૢૼ૾ૼૼૼ

TS $[CH_3AgCH_3]^- + CH_3I \rightarrow CH_3CH_3 + CH_3Ag + I^- (-408 \text{ cm}^{-1})$

н	1.0	-5.94291019	-0.53569698	0.90837699
н	1.0	-5.94154882	-0.60127801	-0.87009501
н	1.0	-5.97997189	0.97143799	-0.03762800
Ag	47.0	-3.42119002	0.00401600	-0.00005100
1	53.0	3.97373199	-0.00847800	-0.00000400
С	6.0	-1.17623496	0.04266700	0.00001000
С	6.0	1.28026700	0.03416600	0.00011100
н	1.0	-0.97377700	-0.49944299	-0.92191702
н	1.0	-0.97397202	-0.48183700	0.93211001
н	1.0	-0.98544002	1.11429095	-0.01013900
н	1.0	1.23277295	-1.04049599	0.00835600
н	1.0	1.24978495	0.57979500	0.92724001
н	1.0	1.24965501	0.56553698	-0.93524897

Sum of electronic and zero-point Energies= -278.078978

Figure S7: Calculated Cartesian coordinates and energies (Hartrees) for key transition state geometries of $[CH_3CuCH_3]^ [CH_3AgCH_3]^-$ reaction with CH_3I ; bond length comparison of S_N2 linear geometry for M = Cu, Ag, Au.

Crystal Structure Comparison:

Bond length (Å)/angle (deg)	DFT value: B3LYP/SDD6-31+G(d)	Experimental value ¹	Previous theory ^{2,3}
C1- Au2, C3-Au2	2.13, 2.13	2.087(5), 2.076(6), 2.084(5), 2.053(5)	2.150 ² , 2.109 ² , 2.13 ³
C2-Au2-C3	179.5	178.2(2), 178.2(2)	180.0 ³

- 1. Zhu, D; Lindeman, S. V.; Kochi, J. K., Organometallics, 1999, 18, 2241-2248
- 2. Tossell, J. A.,. Chem. Phys. Lett. 1998, 286, (1-2), 73-78.
- 3. Nakanishi, W.; Yamanaka, M.; Nakamura, E.,. *J. Am. Chem. Soc.* **2005**, 127, (5), 1446-1453.

Figure S9: Comparison of experimental and computed bond lengths and geometries. 11

[CH ₃ AuO ₂ CCH ₃] ⁻	B3LYP/SDD6-31+G(d)	B3LYP/SDD6-311+G(2d,p)	MP2/SDD6-31+G(d)	MP2/SDD6-311+G(2d,p)
Acetate loss	1.72	1.71	2.09	2.10
Decarboxylation	1.65	1.56	1.67	1.39
CH ₃ Heterolysis	5.33	5.25	5.60	5.56
CH ₃ Homolysis	2.95	2.74	2.98	3.27

[CH ₃ AuCH ₃] ⁻	B3LYP/SDD6-31+G(d)	B3LYP/SDD6-311+G(2d,p)	MP2/SDD6-31+G(d)	MP2/SDD6-311+G(2d,p)
CH ₃ Heterolysis	3.42	3.38	3.83	3.84
🛨 CH₃ Homolysis	2.73	2.74	2.98	3.27
Rearrangement	3.43	3.36	3.57	3.32
beta hydride	2.49	2.39	2.62	2.42

Figure S10: Comparison of computational methods and basis sets for fragmentation 13 f; a) [CH₃CO₂AuO₂CCH₃]⁻; b) [CH₃AuO₂CCH₃]⁻ and c) [CH₃AuCH₃]⁻.Table a), b) and c) contains key energies (eV).

CID of 18 CH ₂ Au(CH ₂ CO ₂) ⁻ 18	CH₃Au(CH₃CO₂)⁻ 0	NCE	Reaction time	MS parameter
3194757	3102716	Sum Intensity ^b	30 ms	
1.03		R^c		q=
15		NCEª		0.25
3241014		Sum Intensity ^b	100 ms	
1.04		\mathcal{F}_{c}		
18		NCEª		
2911279		Sum Intensity ^b	30 ms	
0.94		٦		q= 0
15		NCEª		.35
3242356		Sum Intensity ^b	100 ms	
1.04		ק <i>ר</i>		

Table S11: Intensity comparison at different q values and reaction times: trapped [CH₃CO₂AuCH₃]⁻ versus its CID fragments

a: normalised collision energy, which is the relative CID energy used (the ion-trap software).

b: The sum of the integration of the intensities for all peaks present in the mass spectrum

c: ratio between the Sum of the intensities upon CID and the intensity upon trapping.