Lacunary Tungstotellurates(IV): $[Te_2W_{17}O_{61}]^{12}$, $[Te_2W_{16}O_{58}(OH)_2]^{14}$ and $[Te_2W_{18}O_{62}(OH)_2]^{10}$.

Chris Ritchie, Kerwyn G. Alley, Colette Boskovic*

Table of Contents

- 2 Experimental Details
- 3 **Fig. S1** Comparison of experimental (top) and simulated (bottom) X-ray diffraction powder patterns for compound **1**.
- 3 **Fig. S2** Comparison of experimental (top) and simulated (bottom) X-ray diffraction powder patterns for compound **2**.
- 4 **Fig. S3** Cyclic (black, solid line, $v = 100 \text{ mVs}^{-1}$) and square wave (red, dashed line, f = 15 Hz) voltammograms for **1** (2.0 mM in H₂O with 0.1 M KPF₆): cathodic region.
- 4 **Fig. S4** Cyclic voltammogram ($v = 100 \text{ mVs}^{-1}$) for**1** (2.0 mM in H₂O with 0.1 M KPF₆): anodic region.
- 4 Reference

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 Experimental Details

NMR Spectroscopy

¹²⁵Te and ¹⁸³W NMR spectra were acquired in o.d. 10 mm sample tubes on a Bruker DRX500 spectrometer eqipped with a broadband probe. The ¹²⁵Te NMR spectrum was acquired at 158.058 MHz with a spectral width of 100 000 Hz, 3000 transients of 128 K data points and a recycle time of 1.5 to 2 s. The spectrum was processed with a line broadening of 10 Hz. The reference was an external replacement sample of H₂TeO₄·2H₂O with a chemical shift δ of 707 ppm versus Me₂Te.¹ The ¹⁸³W NMR spectum was acquired at 20.834 MHz with a spectral width of 6250 Hz, 66 000 transients of 32 K data points and a recycle time of 3.5 to 4 s. The spectrum was processed with a line broadening of 1 Hz. The reference was an external replacement solution of 1 Hz. The reference was an external replacement solution of 1 Hz. The reference was an external replacement of 3.2 K data points and a recycle time of 3.5 to 4 s. The spectrum was processed with a line broadening of 1 Hz. The reference was an external replacement sample of 1 Hz.

Cyclic and Square Wave Voltammetry

Voltammetric measurements employed an eDAQ ED401 e-corder electroanalysis system equipped with an eDAQ EA161 potentiostat. All measurements used a standard three electrode arrangement with a glassy carbon (1 mm diameter) working electrode, a platinum auxiliary electrode and an aqueous Ag/AgCl (3.4 M KCl) reference electrode. Solutions were 2 mM in analyte with 0.1 M KPF₆ as supporting electrolyte.

Powder X-ray Diffraction

X-ray powder diffraction was carried out on a Bruker B8 ADVANCE diffractometer fitted with a graphite-monochromated Cu K α source ($\lambda = 1.5406$ Å) and a scintillation counter detector. The finely-powdered samples were pressed into polycarbonate sample holders and data collected with 3 °< 20 < 70 °, with a step size of 0.02 ° and a count rate of 2s/step.

IR Spectroscopy

IR spectra were recorded on a Bruker Tensor 27 FTIR spectrometer as pressed KBr disks. Selected IR Data (cm⁻¹) for compound **1**: 1625 (m), 1384 (w), 946 (s), 855 (s), 766 (s), 689 (s), 634 (s), 492 (s), 469 (s); for compound **2**: 1631 (m), 1384 (w), 938 (s), 868 (s), 761 (s), 704 (s), 499 (s).

Elemental analyses

Elemental analyses were performed by the Microanalytical Unit, Research School of Chemistry, Australian National University, Canberra, Australia.

Fig. S1 Comparison of experimental (top) and simulated (bottom) X-ray diffraction powder patterns for compound 1.

Fig. S2 Comparison of experimental (top) and simulated (bottom) X-ray diffraction powder patterns for compound **2**.

Fig. S3 Cyclic (black, solid line, $v = 100 \text{ mVs}^{-1}$) and square wave (red, dashed line, f = 15 Hz) voltammograms for **1** (2.0 mM in H₂O with 0.1 M KPF₆): cathodic region.

Fig. S4 Cyclic voltammogram ($v = 100 \text{ mVs}^{-1}$) for **1** (2.0 mM in H₂O with 0.1 M KPF₆): anodic region.

Reference

1. W. Tötsch, P. Peringer and F. Sladky, J. C. S. Chem. Comm. 1981, 841.