SUPPORTING INFORMATION

Figure S1. ¹H NMR spectrum of D2²⁺ recorded in DMSO at 400 MHz

Figure S2. ¹H NMR spectrum of D3²⁺ recorded in DMSO at 400 MHz

Figure S3. Distribution diagram of the Cu(II) complexes formed by $D3^{2+}$ in water. $[D3^{2+}] = [Cu(II)] = 1 \times 10^{-3}$.

Figure S4. UV-Vis spectra for the HD2³⁺ titration by copper(II). $C_{D2} = 1 \times 10^{-5}$ M, I = 0.10 M, pH = 7.0, T = 25°C, $C_{Cu} = 0$ M (a), 1.1×10^{-4} M (b).

Figure S5. UV-vis absorption spectra of $D3^{2+}$ (a) and $D2^{2+}$ (b) recorded in water at different pH values and 25°C.

Figure S6. UV-Vis spectrum of $D3^{2+}$ in ethanol (A). Fluorescence emission spectra of $D3^{2+}$ in ethanol, water and ethanol/water mixtures (B). Percentages (v:v) are referred to water in ethanol. $[D3^{2+}] = 1 \times 10^{-5}$ M, T = 25°C.

Figure S7. Analysis of fluorescence titration data for the DNA/CuD2⁴⁺ system to equation (6). $I = 0.10 \text{ M}, \text{ pH} = 7.0, T = 25^{\circ}\text{C}.$

Figure S8. Spectrofluorometric titration of the DNA/HD3³⁺ system (A), relevant binding isotherm at $\lambda_{em} = 600$ nm (B) and analysis of the fluorescence titration data to equation (5) (C). $C_D = 8.8 \times 10^{-6}$ M, C_P from 0 (a) to 6.5×10^{-5} M (b), $\lambda_{ex} = 450$ nm, I = 0.10 M, pH = 7.0, T = 25°C.

Figure S9. Spectrofluorometric titration of the DNA/CuD3⁴⁺ system (A), relevant binding isotherm at $\lambda_{em} = 600$ nm (B) and analysis of the fluorescence titration data to equation (5) (C). $C_D = 8.8 \times 10^{-6}$ M, C_P from 0 (a) to 4.6×10⁻⁵ M (b), $\lambda_{ex} = 450$ nm, I = 0.10 M, pH = 7.0, T = 25°C.

Figure S10. Binding isotherms from spectrophotometric titrations of the DNA/HD2³⁺ (A) and DNA/HD3³⁺ (B) systems under low added salt conditions; $C_D = 1.1 \times 10^{-5}$ M, I = 0.003 M, pH = 7.0, $\lambda = 360$ nm, T = 25°C. Circled points in (A) are related to precipitation phenomena.

Electronic Supplementary Information for Dalton Transactions This journal is $\mbox{$\bigcirc$}$ The Royal Society of Chemistry 2010

Figure S11. Spectrophotometric titrations of the DNA/H₂D1⁴⁺ system; I = 0.10 M, pH = 7.0, T = 25° C. (A) Visible range: C_D = 1.2×10^{-5} M, C_P from 0 (a) to 1.0×10^{-4} M (b). (B) UV range: C_D = 5.0×10^{-6} M, C_P from 0 M (a) to 7.4×10^{-5} M (b), differential titration (DNA added in both sample and reference cells). (C) Binding isotherm at 288nm from titration (B); the inset is an enlargement of the first part of the plot.

Figure S12. Fluorescence spectra for the DNA/H₂D1⁴⁺ system recorded during titration (a) and relevant binding isotherm at 607nm (b). $C_D = 1.2 \times 10^{-5}$ M, I = 0.10 M, pH = 7.0, T = 25°C, $\lambda ex = 450$ nm, $C_P = 0$ M (a), 2.1×10^{-4} M (b).

Figure S13. Spectrofluorometric titration of the DNA/CuD1⁴⁺ system; I = 0.10 M, pH = 7.0, $\lambda_{ex} = 450$ nm, T = 25°C. (A) Collected spectra $C_D = 1.3 \times 10^{-5}$ M, C_P from 0 (a) to 1.4×10^{-4} M (b). (B) Binding isotherm at $\lambda_{em} = 607$ nm.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S14. Electrophoresis experiments on the DNA/HD2³⁺, DNA/CuD2⁴⁺, DNA/HD3²⁺ and DNA/CuD3⁴⁺ systems, alone or in the presence of H₂O₂ (1.8×10^{-3} M). C_{DNA} = 2.5×10^{-4} M, Trisacetate-EDTA buffer (pH = 7.4), 1% agarose gel with 1×10^{-6} M Ethidium staining, 65V, 50mA.

Figure S15. Stopped-flow curves for the DNA/HD2³⁺ system (A) and for the DNA/HD3²⁺ system (B) at I= 0.10 M, pH = 7.0, λ = 360nm, T = 25°C; the line is least-square bi-exponential data fitting. (A) C_D = 9.4×10⁻⁶ M, C_P = 9.5×10⁻⁵ M; (B) C_D = 1.0×10⁻⁵ M, C_P = 2.0×10⁻⁴ M.

Figure S16. Calculated conformation for the ATATATATAT $/\Delta$ -HD3³⁺ adduct.

Figure S17. Calculated conformation for the ATCGCGCGAT/ Λ -HD3³⁺ adduct.

Figure S18. Calculated conformation for the CGATCGATCG/ Δ -HD3³⁺ adduct.

Figure S19. Calculated conformation for the CGCGATATCG/ Λ -HD3³⁺ adduct.

Figure S20. Calculated conformation for the GCGCGCGCGC/ Δ -HD3³⁺ adduct.

Figure S21. Calculated conformation for the ATATATATAT $/\Delta$ -HD2³⁺ adduct.

Figure S22. Calculated conformation for the ATATATATAT $/\Delta$ -H₂D2⁴⁺ adduct.

Figure S23. Calculated conformation for the ATCGCGCGAT/ Λ -H₂D2⁴⁺ adduct.

Figure S24. Calculated conformation for the CGATCGATCG/ Λ -H₂D2⁴⁺ adduct.

Figure S25. Calculated conformation for the CGATCGATCG/ Λ -HD2³⁺ adduct.

Figure S26. Calculated conformation for the CGCGATATCG/ Δ -H₂D2⁴⁺ adduct.

Figure S27. Calculated conformation for the GCGCGCGCGC/ Λ -H₂D2⁴⁺ adduct.