Tetradentate selenium ligand as a building block for homodinuclear complexes of Pd(II) and Ru(II) having seven membered rings or bis-pincer coordination mode: high catalytic activity of Pd-complexes for Heck reaction

Dipanwita Das, Pradhumn Singh, Monika Singh[‡] and Ajai K. Singh^{*} Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi110016, India

	L (763938)	1 (765901)	2 (763939)	3 (770943)
Empirical	C ₃₄ H ₃₀ Se ₄	$C_{40}H_{40}Cl_2O_8Pd_2Se_4$	$C_{44}H_{38}B_2F_8N_2Pd_2Se_4$	$C_{46}H_{42}Cl_2F_{12}P_2Ru_2Se_4$
formula				
Crystal size	0.504×0.314	0.203 × 0.150 ×	$0.524 \times 0.342 \times$	$0.524 \times 0.324 \times 0.184$
[mm]	× 0.144	0.065	0.178	
θ range [°]	2.35 - 28.32	2.25 - 25.05	2.25 - 25.73	2.20 - 28.32
Index ranges	$-14 \le h \le 14$	$-13 \le h \le 13$	$-26 \le h \le 26$	$-34 \le h \le 34$
	$-12 \le k \le 12$	$-17 \le k \le 17$	$-12 \le k \le 12$	$-13 \le k \le 13$
	$-13 \le l \le 13$	$-18 \le l \le 18$	$-22 \le l \le 22$	$-22 \le l \le 22$
Max./min.	0.489/ 0.164	0.771/ 0.482	0.493/ 0.207	0.545/ 0.282
Transmission				
Data/restraints/	2596 / 0 / 172	8180 / 40 / 494	4042 / 1 / 280	4996 / 12/ 296
parameters				
Final R indices	$R_1 = 0.0997,$	$R_1 = 0.0610,$	$R_1 = 0.0458,$	$R_1 = 0.0836,$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.1692$	$wR_2 = 0.1391$	$wR_2 = 0.1323$	$wR_2 = 0.1650$
R indices (all	$R_1 = 0.1141,$	$R_1 = 0.1071,$	$R_1 = 0.0572,$	$R_1 = 0.1493,$
data)	$wR_2 = 0.1745$	$wR_2 = 0.1579$	$wR_2 = 0.1397$	$wR_2 = 0.1923$
Largest diff.	0.891/-0.861	1.209 / -0.668	1.220 / -0.676	0.848/-0.682
peak/hole [e.Å ⁻³]				

Table S1	Crystal	data and	structural	refinements	for L 1	2 and 3
14010 01.	Ciybtui	aata ana	Suactura		101 L , 1	., a unu e

	Bond Lengt	Bond Length [Å]		Bond Angle [°]	
	Se(1)—C(5)	1.907(9)	C(5)-Se(1)-C(4)	103.5(4)	
	Se(1) - C(4)	1.971(9)	C(12)-Se(2)-C(11)	98.6(4)	
	Se(2) - C(12)	1.939(8)	C(3)-C(4)-Se(1)	104.2(6)	
L	Se(2) - C(11)	1.973(10)	C(6)-C(5)-Se(1)	124.5(7)	
			C(10)-C(5)-Se(1)	116.2(7)	
			C(2)-C(11)-Se(2)	112.1(7)	
			C(17)-C(12)-Se(2)	121.7(7)	
			C(13)-C(12)-Se(2)	117.0(7)	
	Pd(1)-C(2)	2.128(13)	C(2)-Pd(1)-C(3)	37.5(5)	
	Pd(1)-C(3)	2.143(11)	C(2)-Pd(1)-C(1)	37.1(5)	
	Pd(1)-C(1)	2.160(11)	C(3)-Pd(1)-C(1)	66.8(5)	
	Pd(1)—Se(2)	2.4494(16)	C(2) - Pd(1) - Se(2)	125.9(4)	
	Pd(1)—Se(1)	2.4557(17)	C(3) - Pd(1) - Se(2)	158.1(4)	
	Se(1) - C(10)	1.943(10)	C(1)-Pd(1)-Se(2)	92.4(4)	
	Se(1) - C(4)	2.022(11)	C(2)-Pd(1)-Se(1)	127.9(4)	
1	Se(2) - C(15)	1.922(10)	C(3)-Pd(1)-Se(1)	94.3(4)	
	Se(2) - C(14)	1.994(10)	C(1)-Pd(1)-Se(1)	160.1(4)	
			Se(2) - Pd(1) - Se(1)	105.54(5)	
			C(10)-Se(1)-C(4)	92.3(5)	
			C(10)-Se(1)-Pd(1)	111.5(3)	
			C(4)-Se(1)-Pd(1)	102.3(3)	
			C(15)-Se(2)-C(14)	97.7(4)	
			C(15)-Se(2)-Pd(1)	104.2(3)	
			C(14)-Se(2)-Pd(1)	109.0(3)	
	Pd(1) - C(9)	2.009(5)	C(9)-Pd(1)-N(1)	178.0(2)	
	Pd(1) - N(1)	2.148(5)	C(9) - Pd(1) - Se(2)	86.09(15)	
	Pd(1) - Se(2)	2.4005(8)	N(1)-Pd(1)-Se(2)	92.18(13)	
	Pd(1)—Se(1)	2.4084(7)	C(9)-Pd(1)-Se(1)	85.97(15)	
	Se(1) - C(6)	1.942(6)	N(1)-Pd(1)-Se(1)	95.75(13)	
2	Se(1) - C(7)	1.950(6)	Se(2) - Pd(1) - Se(1)	172.06(3)	
	Se(2) - C(12)	1.931(7)	C(6)-Se(1)-C(7)	100.8(3)	
	Se(2) - C(11)	1.954(6)	C(6)-Se(1)-Pd(1)	102.22(17)	
			C(7) - Se(1) - Pd(1)	93.79(17)	
			C(12)-Se(2)-C(11)	98.7(3)	
			C(12)-Se(2)-Pd(1)	105.0(2)	
			C(11) - Se(2) - Pd(1)	93.93(17)	

Table S2. Bond Lengths and Bond Angles of L, 1, 2 and 3

	Ru(1)—C(23)	2.139(15)	C(23)-Ru(1)-Cl(1)	130.2(9)
	Ru(1)—C(22)	2.176(16)	C(22)-Ru(1)-Cl(1)	163.6(5)
	Ru(1)—C(21)	2.177(19)	C(21)-Ru(1)-Cl(1)	139.6(7)
	Ru(1)—C(19)	2.19(2)	C(19)-Ru(1)-Cl(1)	89.2(7)
	Ru(1)—C(18)	2.20(2)	C(18)-Ru(1)-Cl(1)	95.1(11)
	Ru(1)—C(20)	2.215(16)	C(20)-Ru(1)-Cl(1)	104.9(7)
	Ru(1)— $Cl(1)$	2.394(4)	C(23)-Ru(1)-Se(1)	85.9(5)
	Ru(1)—Se(1)	2.4945(18)	C(22)-Ru(1)-Se(1)	100.0(5)
	Ru(1)— $Se(2)$	2.5164(18)	C(21)-Ru(1)-Se(1)	135.1(7)
	Se(1) - C(1)	1.923(11)	C(19)-Ru(1)-Se(1)	134.1(11)
	Se(1) - C(7)	1.966(13)	C(18)-Ru(1)-Se(1)	100.6(11)
	Se(2) - C(12)	1.918(13)	C(20)-Ru(1)-Se(1)	163.0(5)
	Se(2) - C(11)	1.985(12)	Cl(1)-Ru(1)-Se(1)	85.23(9)
			C(23)-Ru(1)-Se(2)	138.3(9)
3			C(22)-Ru(1)-Se(2)	104.5(5)
			C(21)-Ru(1)-Se(2)	86.8(5)
			C(19)-Ru(1)-Se(2)	134.0(12)
			C(18)-Ru(1)-Se(2)	166.7(8)
			C(20)-Ru(1)-Se(2)	101.5(7)
			Cl(1)-Ru(1)-Se(2)	90.81(9)
			Se(1)-Ru(1)-Se(2)	91.74(5)
			C(1)-Se(1)-C(7)	98.2(5)
			C(12)-Se(2)-C(11)	101.9(6)
			C(12)-Se(2)-Ru(1)	102.4(4)
			C(11)-Se(2)-Ru(1)	109.9(3)

IR Data

- L (KBr, cm⁻¹): $3012(v_{C-H(aromatic)})$, $2908(v_{C-H(aliphatic)})$, $1564(v_{C=C(aromatic)})$, $733(v_{C-H(aromatic bend)})$.
- 1 (KBr, cm⁻¹): $3032(v_{C-H(aromatic)})$, $2896(v_{CH(aliphatic)})$, 1589 ($v_{C=C(aromatic)}$), 1089 and $630 (v_{Cl-O})$, $733(v_{C-H(aromatic bend)})$
- 3 (KBr, cm⁻¹): $3213(v_{C-H(aromatic}))$, $2842(v_{C-H(aliphatic)})$, $1534(v_{C=C(aromatic)})$, $845(v_{P-F(aromatic bend)})$, $730(v_{C-H(aromatic bend)})$.

Fig S1. C–H··· π and π ··· π interactions in L

Fig S2. In 1 3-D network formation as a result of weak O…H interactions; 2.384(15) – 2.968(18) Å

Fig S3. BF_4^- participating in intra- and inter-molecular H···F interactions in **2**; 2.390(7)-2.922(23) Å

Fig S4. Two cationic units $[Pd_2(Py)_2(L)]^{2+}$ linked by BF₄⁻ through H…F interactions

Fig S5. Complex 3-D network formation in **3** as a result of weak H···F and H···Cl interactions H···F length range 2.649(16) - 3.051(18) Å, H···Cl length range 2.703(4) - 3.025(3) Å

Fig S6. 77 Se $\{^{1}$ H $\}$ NMR of L

Fig S7. 77 Se $\{^{1}$ H $\}$ NMR of 1

Fig S8. ⁷⁷Se $\{^{1}H\}$ NMR of **2**

Fig S9. 77 Se{ 1 H} NMR of **3**