Electronic Supplementary Information

DFT study on the mechanism for the substitution of F⁻ into Al(III)

complexes in aqueous solution

Xiaoyan Jin,^a Zhaosheng Qian,^b Bangmei Lu^a and Shuping Bi^{*a}

^aSchool of Chemistry and Chemical Engineering, State Key Laboratory of Coordination

Chemistry of China & Key Laboratory of MOE for Life Science, Nanjing University,

Nanjing 210093, China

^bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang

321004, China

Contents

1. The structures of reactants, transition states and products with GP model	2
2. Optimized geometry of reactant with PCM model	2
3. The structural parameters at critical positions in IRC computation.	3
4. Natural population analysis (NPA) charges for reactants, transition states and	
products of the substitution reaction of $Al(H_2O)_6^{3+}$ and $Al(H_2O)_5(OH)^{2+}$	3
5. Optimized geometries of transition states using SM model	4
6. The atomic displacement in transition state	4
7. The summarized mechanism changeover induced by the spectator anion in previo	us
study	5
8. The computational details of transmission coefficient	5
9. Cartesian coordinates of all the structures	7
10. Frequencies of all the structures	13

1. The structures of reactants, transition states and products with GP model

Fig. S1 The structures of reactants, transition states and products formed for substitution of a H₂O ligand of $Al(H_2O)_6^{3+}$ and $Al(H_2O)_5(OH)^{2+}$ by F⁻ via the I_a mechanism. R1, TS1 and P1 corresponds to $Al(H_2O)_6^{3+}$. R2, TS2 and P2 corresponds to $Al(H_2O)_5(OH)^{2+}$.

2. Optimized geometry of reactant with PCM model

Fig. S2 Optimized geometry of reactant with PCM model for substitution of a H_2O ligand of $Al(H_2O)_6^{3+}$ by F⁻.

3. The structural parameters at critical positions in IRC computation.

Fig. S3 The structural parameters at critical positions (A) $s \approx -9.0$, (B) $s \approx 0$, (C) $s \approx 6.1$, (D) s \approx 8.2 Bohr (amu)^{1/2}.

4. Natural population analysis (NPA) charges for reactants, transition states and products of the substitution reaction of $Al(H_2O)_6^{3+}$ and $Al(H_2O)_5(OH)^{2+}$

TS1 and P1 correspond to $Al(H_2O)_6^{3+}$. R2, TS2 and				
P2 corresp	oond to Al	$(H_2O)_5(OH$	$I)^{2+}$.	
Species	q_{Al}	q_{F}	q_{O}	$q_{\rm H}$
R1	1.941	-0.590	-0.993	0.549
TS1	1.911	-0.766	-0.962	0.552
P1	1.969	-0.746	-0.955	0.542
R2	1.927	-0.629	-1.019	0.529
TS2	1.901	-0.789	-0.986	0.528
P2	1.953	-0.770	-0.988	0.522

Table S1 NPA charges (e) for the substitution reaction of $Al(H_2O)_6^{3+}$ and $Al(H_2O)_5(OH)^{2+}$. R1,

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

Fig. S4 Optimized geometries of transition states $\{[Al(H_2O)_5...F(H_2O)]^{2+}\cdot nH_2O\}^*$ using SM model for substitution of a H₂O ligand of $Al(H_2O)_6^{3+}$ by F⁻ via the I_a mechanism with the different number of water molecules in the second solvent sphere. (a) n=1; (b) n=2; (c) n=3; (d) n=4; (e) n=5.

6. The atomic displacement in transition state.

No.	Atom	Х	Y	Ζ	-	No.	Atom	Х	Y	Ζ
1	0	-0.04	-0.11	-0.12		11	Η	-0.04	0.37	-0.06
2	0	-0.05	-0.05	0.16		12	Η	-0.19	0.19	0.08
3	0	0.05	0.02	0.00		13	Η	-0.20	-0.16	0.13
4	Ο	0.05	-0.01	0.02		14	Η	-0.04	-0.13	0.37
5	Ο	-0.05	0.16	-0.03		15	Η	-0.04	-0.25	-0.30
6	Al	0.23	0.00	0.00		16	F	-0.32	0.00	0.00
7	Н	0.01	-0.02	-0.04		17	Η	-0.20	-0.03	-0.21
8	Н	0.07	0.08	-0.04		18	Η	0.05	-0.01	-0.02
9	Н	0.01	0.05	0.00		19	Η	0.07	-0.07	-0.05
10	Н	0.07	0.00	0.09		20	Η	0.01	-0.03	0.04

 Table S2 The atomic displacement in transition state.

7. The summarized mechanism changeover induced by the spectator anion in previous study

		Activation parameters					
	Mechanis	$\Delta \mathrm{H}^{\neq}$	$\Delta \mathrm{S}^{\neq}$	$\Delta \mathrm{G}^{ eq}$	$\Delta \mathrm{V}^{ eq}$		Ref
Reaction	m	(kJ	(J mol ⁻¹	(kJ	(cm^3)	k	
		mol^{-1})	K^{-1})	mol^{-1})	mol^{-1})	(s^{-1})	
$Al(H_2O)_6^{3+}+F^{-}$	Ia	96.3	82.9	71.6	-	1.79 a	
$Al(H_2O)_6(OH)^{2+}+$ F	I _d	83.7	99.8	53.9	-	2201 a	1
Fe ³⁺ +Cl ⁻	Ia	-	-	-	-4.5	-	C
$Fe(OH)^{2+}+Cl^{-}$	Id	-	-	-	7.8	-	Z
$UO_2(OH_2)_5^{2+}+H_2$ O	А	32.4 ^b	-23.4 ^b	39.3 ^b	-2.9 ^b	-	
UO ₂ (OH ₂) ₄ L ^{+/0} +H	D						3
^{2}O (L=F ⁻ /OH ⁻ /C ₂ O ₄ ²⁻		-	-	-	-	-	
1							

	TT1 1	• •	• 1	11 /1	•	•	• ,	1
Table N3	The mechan	usm change	over induced	1 hv the s	nectator anio	n ın	nrevious sti	idv
	I no moonan	institi onaligo	over mauce	a by the s	poolator anno		provious su	iuy.

^a The obtained values according to the data in reference. ^b The computed values by *ab initio* method.

References

(1) B. J. Plankey and H. H. Patterson, Inorg. Chem. 1989, 28, 4331.

(2) B. B. Hasinoff. Can. J. Chem. 1976, 54, 1820.

(3) F. P. Rotzinger. Chem. Eur. J. 2007, 13, 800.

8. The computational details of transmission coefficient

As an important kinetic parameter, transmission coefficient (κ) can relate the theoretical to experimental data by Eq. S1,¹ where k_{ex} is experimental rate constant and k_{TST} is transition state rate constant. k_{ex} is determined by a rich variety of experimental techniques and the relationship between the experimental activation parameters (ΔH_{e}^{\pm} , ΔS_{e}^{\pm} , ΔG_{e}^{\pm}) and k_{ex} is expressed by Eyring equation,² where ΔH_{e}^{\pm} , ΔS_{e}^{\pm} , ΔG_{e}^{\pm} represent experimental activation enthalpy, activation entropy, activation free energy respectively and k_{b} , T, h, R are Boltzmann's constant, absolute temperature, Planck's constant and the gas constant respectively. k_{TST} is obtained from theoretical computation.³ According to the transition state theory, k_{TST} can be expressed by Eyring equation (Eq. S3) as well. ΔH_{e}^{\pm} , ΔS_{e}^{\pm} and ΔG_{e}^{\pm} represent computational activation activation enthalpy, activation entropy, activation free energy respectively.

$$k_{ex} = \kappa k_{TST}$$
(S1)

$$k_{ex} = \frac{k_b T}{h} \exp\left(-\frac{\Delta G_e^{\neq}}{RT}\right) = \frac{k_b T}{h} \exp\left(\frac{\Delta S_e^{\neq}}{R} - \frac{\Delta H_e^{\neq}}{RT}\right)$$
(S2)

Electronic Supplementary Information for Dalton Transactions This journal is $\mbox{$\bigcirc$}$ The Royal Society of Chemistry 2011

$$k_{TST} = \frac{k_b T}{h} \exp\left(-\frac{\Delta G_c^{\neq}}{RT}\right) = \frac{k_b T}{h} \exp\left(\frac{\Delta S_c^{\neq}}{R} - \frac{\Delta H_c^{\neq}}{RT}\right)$$
(S3)

In previous studies κ is assumed to be unity,⁴ thereby $k_{ex} = k_{TST}$. However, people recently have realized that κ actually deviates from unity more or less.^{3,5} According to this viewpoint, the computed activation parameters should not be compared directly with the experimental activation parameters and they are linked by Eq. S1. Thus κ is crucial to establish the relation of experiment and theory. In previous work κ is obtained by two approaches: one is based on Eq. S1 with the known kex and k_{TST} ; the other is molecular dynamics, by which κ can be observed directly. According to the Garcia-Viloca's view,⁶ the transmission coefficient κ includes three factors, namely, recrossing factor, tunneling factor and non-equilibrium factor where the recrossing and non-equilibrium factors are found important for reaction in aqueous solution. In previous molecular dynamics study,^{6d} the absence of non-equilibrium factor gives rise to the large error in kex compared with the measured values. If the static calculation is employed to observe k_{TST} , the yielding κ by Eq. S1 include not only recrossing factor but also nonequilibrium factor.^{6a,6b} Although the current DFT errors prevent the accurate computation of transmission coefficients, the computation by static method is still a potential approach to obtain κ in case of overcoming the errors.

Reference

- 1 Fernandez-Ramos, J. A. Miller, S. J. Kippenstein and D. G. Truhlar, *Chem. Rev.* 2006, **106**, 4518.
- 2 H. Eyring. J. Chem. Phys. 1935, 3, 107.
- 3 (a) Z. S. Qian, H. Feng, X. Y. Jin, W. J. Yang, Y. J. Wang and S. P. Bi, *Environ. Sci. Technol.*, 2009, 43, 9281; (b) Z. S. Qian, H. Feng, Z. J. Zhang, W. J. Yang, M. Wang, Y. J. Wang and S. P. Bi, *Geochim. Cosmochim. Acta*, 2009, 73, 1588; (c) J. R. Rustad and A. G. Stack, *J. Am. Chem. Soc.* 2006, 128, 14778; (d) J. W. Wang, J. R. Rustad and W. H. Casey, *Inorg. Chem.* 2007, 46, 2962.
- 4 Y. Inada, A. M. Mohammed, H. H. Loeffler and S. Funahashi, *Helv. Chim. Acta*, 2005, **88**, 461.
- 5 (a) W. H. Casey and J. R. Rustad, *Annu. Rev. Earth Planet. Sci.* 2007, 35, 21; (b) Z.
 S. Qian, H. Feng, W. J. Yang and S. P. Bi, *J. Am. Chem. Soc.*, 2008, 130, 14402.
- 6 M. Garcia-Viloca, J. Gao, M. Karplus and D. G. Truhlar, Science 2004, 303, 186.

9. Cartesian coordinates of all the structures $\left[Al(H_2O)_6\right]^{3+}\cdot F^-$

0	-0.75993500	-0.36458600	-1.42946700
0	-0.69194900	1.57918700	0.45552700
0	1.60525100	1.18631900	-0.97986400
0	1.44827100	-1.56381000	-0.51316200
0	-0.78037800	-1.06015300	1.17932900
AI	0.30924200	-0.01903800	-0.07228300
Н	1.35042200	2.08996100	-1.22833600
Н	2.28722100	0.89262500	-1.60447700
Н	1.14871800	-2.14395600	-1.23277700
Н	2.22763500	-1.95618800	-0.09024300
Н	-1.74192800	-0.87010700	1.06600800
Н	-0.69378500	-2.01261000	1.33918400
Н	-0.58488400	2.16207300	1.22257400
Н	-1.63900000	1.57038400	0.20455800
Н	-2.29372100	-0.25272400	-0.87509600
F	-2.83535000	-0.00932800	-0.11269100
Н	-0.66634900	-0.16257900	-2.36447000
0	1.49391500	0.25503900	1.48929800
Н	2.30650100	0.78399800	1.51120100
Н	1.27577800	-0.02539300	2.39249600

${[Al(H_2O)_5...F(H_2O)]^{2+}}$ *

0	0.71809900	-1.04125400	-1.42867200
0	0.71378700	-0.71215100	1.61788000
0	-1.37196900	-1.51765100	0.29695000
0	-1.37342800	0.49925500	-1.46093300
0	0.71488200	1.75801300	-0.18798700
Al	-0.06464400	-0.00013800	-0.00078000
н	-1.14545400	-2.28064400	0.85200200
н	-2.12599500	-1.75853000	-0.26229700
н	-1.15214700	0.39906600	-2.40034400
н	-2.12637800	1.10486600	-1.38619100
н	1.69169700	1.55603700	-0.17740000
н	0.50651200	2.53797400	-0.72190000
н	0.50593400	-0.63755100	2.56020900
н	1.69053100	-0.61748200	1.43546800
н	1.69447300	-0.92992100	-1.25862000
F	2.21316900	0.00102500	0.00409700
н	0.51209100	-1.89710800	-1.83109100
0	-1.38091000	1.01323100	1.15933000
н	-2.13252700	0.64381000	1.64712500
Н	-1.16057500	1.87650600	1.54376000
$\left[\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{F}\right]^{2+}\cdot\mathrm{H}$	I_2O		

0	-0.58995700	-1.97220700	0.08990700

0	3.30370700	0.00169500	-0.12292100
0	1.13259300	-0.06939800	1.08985300
0	-1.61747300	0.02372900	1.47949800
0	-1.94316700	0.06602000	-1.23016500
AI	-0.36875100	-0.00281900	-0.04265200
н	2.07862200	-0.06220800	0.63337600
н	1.20887400	-0.09182900	2.05206300
н	-1.97912200	-0.75998300	1.92117800
н	-1.91387800	0.82067300	1.94540000
н	-1.75016900	0.07384400	-2.18286400
н	-2.90042500	0.11590800	-1.09026700
н	4.22195300	-0.05974800	0.17040700
н	3.27963800	-0.02877300	-1.08845200
н	-1.05832900	-2.47582500	-0.59452300
F	0.58164600	-0.01783700	-1.45088700
н	0.17182400	-2.50869500	0.36183300
0	-0.44746200	1.97488700	0.14064000
н	0.34224300	2.44360500	0.45479900
н	-0.84821700	2.53239200	-0.54498400

$\left[\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}\right]^{2+}\cdot\mathrm{F}^{-}$

0	0.62161700	0.55166000	1.44743700
0	0.89593800	0.81747700	-1.18337500

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

0	-1.33053000	1.75274400	0.02257200
0	-1.67864100	-0.68152900	1.18655100
0	0.70473200	-1.69280000	0.05269300
Al	-0.38634100	-0.02833300	-0.19964100
Н	-1.01435500	2.43976400	-0.58137300
н	-2.29624800	1.79051000	0.05376400
Н	-1.43242000	-1.07071500	2.03530500
н	-2.30624800	-1.25862300	0.72071600
н	1.67445300	-1.58624200	0.05060400
н	0.46170800	-2.40344200	-0.55655100
Н	0.90107900	0.79329800	-2.14403400
Н	2.14389300	0.47945600	-0.60409100
Н	1.59632500	0.50048300	1.33162200
F	2.79069000	0.06999700	0.06312900
н	0.40852100	1.40576000	1.84488300
0	-1.53358100	-0.82262800	-1.26518000
н	-1.66676100	-0.75127300	-2.20924500

${[Al(H_2O)_4OH...F(H_2O)]^+}^{\pm}$

0	-0.35812900	0.09596200	-1.74050500
0	-0.94020700	1.65559300	0.72512900
0	1.39343000	1.55716200	-0.41321400
0	1.78827100	-0.99598700	-0.54359900

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

0	-0.62465800	-1.91462000	0.20375500
AI	0.07247200	-0.02282300	0.15417200
Н	1.24086000	2.46115900	-0.11100000
Н	2.34448700	1.39525200	-0.45394700
Н	1.72299700	-1.69319000	-1.21005300
Н	2.19428300	-1.37164600	0.25350300
Н	-1.59214200	-1.79086400	0.10831800
Н	-0.44899400	-2.29797800	1.07567700
Н	-0.95278000	1.92988400	1.65073400
Н	-1.83884200	1.29165800	0.48881100
Н	-1.34588100	0.07803300	-1.72606000
F	-2.15814200	-0.11199300	-0.21738800
Н	-0.01911400	0.79109200	-2.31809300
0	0.77555000	-0.35694700	1.72920300
н	0.90220700	0.18194200	2.50820900

$\left[\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{4}\mathrm{F}(\mathrm{O}\mathrm{H})\right]^{+}\cdot\mathrm{H}_{2}\mathrm{O}$

0	0.05195800	0.84824900	1.65411500
0	-3.18215200	0.03563800	-0.12752000
0	-1.02957000	-1.28665700	0.38169200
0	1.69781000	-1.08139900	0.93761800
0	1.85934500	1.33037800	-0.39772900
AI	0.36626800	-0.02544800	-0.16054400

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2011

Н	-1.96018700	-0.94980000	0.20138500
Н	-0.95427400	-2.19661400	0.06981600
Н	2.39686400	-0.67656100	1.46719700
Н	2.11065700	-1.64817500	0.26189600
н	1.61661900	2.26261700	-0.48416400
н	2.31083100	1.07056000	-1.21620900
н	-4.10045500	-0.09859800	-0.38428800
н	-2.79619000	0.72715500	-0.68671800
н	-0.62883600	1.53465400	1.59848600
F	-0.79021400	1.13745300	-0.74561600
н	-0.15665200	0.29275800	2.41762200
0	1.07651400	-0.98388300	-1.46165100
Н	0.72083800	-1.12284300	-2.33960500

10. Frequencies of all the structures

[Al(H ₂ O)	$\left[5\right]^{3+} \cdot \mathbf{F}^{-}$					
60.6738	131.9240	148.6212	162.1262	177.4094	185.2566	216.2098
232.7244	245.3854	257.5564	261.8701	284.7297	307.9233	317.3176
321.6313	328.8758	355.0243	382.3006	394.4846	427.4321	439.7986
454.0840	486.2430	503.6078	507.5521	515.2319	577.3141	652.3525
659.7053	670.3801	697.1713	704.7606	745.0946	761.6366	829.7207
899.9230	1028.1491	1650.5776	1658.4581	1670.6170	1672.7553	
1685.1714						
3234.4739	3475.4466	3603.2491	3722.3415	3729.2690	3735.4099	
3779.8798	3787.3222	3799.0096	3804.3104	3809.0850	3888.4723	
{[Al(H ₂ O) ₅	$\dots F(H_2O)]^{2}$	⁺}≠				
-251.3648	92.2699	97.6725	180.6491	205.2032	206.1152	217.6309
250.6371	252.4023	269.8744	272.7017	300.5647	303.2471	307.1789
326.4850	330.7300	380.3762	383.9104	389.6013	414.9666	458.5348
461.8851	477.4706	499.5976	519.8646	521.3138	523.4340	647.5118
649.8994	673.5074	693.5402	734.9385	735.6114	826.0733	833.7193
916.3251	1528.9403	1532.8601	1595.0721	1658.4592	1658.5495	
1664.4665						
3260.7161	3270.0981	3332.9688	3736.2228	3736.5876	3741.6215	
3797.6300	3798.2231	3802.1928	3815.6342	3815.8711	3816.4043	

13

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2011

$[Al(H_2O)_5H$	$[F]^{2+} \cdot H_2O$					
30.3833	60.1134	140.7229	149.8446	154.6808	162.8518	192.8816
207.8674	213.4967	223.3829	232.6436	242.8305	267.2532	278.8752
302.8748	318.5065	334.5646	351.6034	386.9098	397.1161	429.0181
448.5656	454.7252	481.9625	484.6487	508.1225	543.6001	565.9195
579.8293	656.6268	680.2875	682.2678	736.0767	798.7343	929.0363
1036.2402	1617.9976	1642.9146	1652.5379	1674.3581	1677.5454	
1736.3006						
2360.9729	3721.3282	3735.7091	3737.4279	3743.5031	3781.1292	
3801.7078	3802.5275	3814.6710	3819.1124	3831.2385	3873.5013	

 $\left[\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}\right]^{2+}\cdot\mathrm{F}^{-}$

93.0213	130.0183	145.4762	153.5448	181.4740	193.7895	221.5146
229.2180	258.9027	276.5451	277.0701	286.8194	291.4235	309.8788
321.0048	356.2140	383.1305	402.2381	411.2238	424.2982	440.9175
472.9752	529.3336	560.6825	578.3064	611.3067	629.5403	672.6093
685.9939	701.3060	716.2949	773.2769	818.9736	877.7831	
1142.1918	1312.9324	1602.4453	1624.1490	1633.1277	1666.7109	
2377.7551	3507.9117	3650.3601	3722.1457	3765.0295	3822.7083	
3833.0592	3852.1691	3854.1640	3887.4302	3956.4172		

${[Al(H_2O)_4OH...F(H_2O)]^+}^{\neq}$

-238.0200	70.0165	97.0310	132.7617	173.2426	182.0595	211.4537
221.5835	233.6492	253.4176	272.4364	289.3955	298.3984	313.1582

14

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

318.3176	333.7930	361.4394	386.3426	395.0515	413.7403	432.0163
451.7283	485.5788	500.9946	586.3703	604.1096	627.2891	646.4873
677.5129	701.4202	703.1733	745.0457	795.9376	823.4147	947.3385
1565.0910	1605.3032	1620.7193	1622.7868	1641.8890	3249.7385	
3437.3923						
3576.3789	3736.4550	3787.8689	3794.7310	3831.3203	3839.7319	
3841.6188	3883.9670	3961.3416				

$[Al(H_2O)_4F(OH)]^+ \cdot H_2O$

30.3732	98.6981	128.1992	141.6582	156.1337	160.1965	184.2888
208.3645	224.1115	251.5646	253.9941	266.5540	275.3362	287.5658
302.2583	304.6109	333.3414	363.0495	371.9147	390.5453	421.5563
445.4958	462.2498	534.1746	543.5146	584.2524	599.3285	629.3472
662.7429	671.6217	696.7589	729.7853	745.2437	836.2766	1021.7850
1591.3803	1629.9228	1642.1775	1656.9676	1692.3818	3059.6125	
3689.9511	3740.7451	3741.9989	3763.0268	3835.7250	3839.7824	
3841.4292	3846.7520	3888.3385	3937.5690			