Electronic Supporting Information

for

A Rhodamine-based Chemosensor for Cu²⁺ and Its

Application in Bioimaging

Liang Huang^a, Xiao Wang^b, GuoQiang Xie^a, PinXian Xi^a, ZhengPeng Li^a, Min Xu^a, YongJie Wu^b, DeCheng Bai^b, ZhengZhi Zeng*^a

 ^aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, P. R. China
^bPharmacology Lab of GanSu Province Key Laboratory of Preclinical Study for New Traditional Chinese Medicine, Lanzhou University, 730000 Lanzhou, P. R. China. Email: <u>zengzhzh@yahoo.com.cn</u>

Table of contents

- 1. Instruments and experimental procedures
- 2. Synthesis routes and characteristic data
- 3. Supplementary spectra data
- 4. NMR spectra

1. Instruments, reagents and experimental procedures

¹H and ¹³C NMR spectra were taken on a Varian mercury-400 spectrometer with TMS as an internal standard and CDCl₃ as solvent. Absorption spectra were determined on a Varian UV-Cary100 spectrophotometer. Fluorescence spectra measurements were performed on a Hitachi F-4500 spectrofluorimeter. All pH measurements were made with a pH-10C digital pH meter. HRMS were determined on a Bruker Daltonics APEXII 47e FT-ICR spectrometer.

All the materials for synthesis were purchased from commercial suppliers and used without further purification. Methanol for spectra detection was HPLC reagent without fluorescent impurity.

Procedures of metal ion sensing

Stock solutions of the metal ions (2.5 mM) were prepared in deionized water. A stock solution of **L1**(1 mM) was prepared in DMF: CH₃CN (1:1 v/v). The solution of **L1** was then diluted to 20 μ M with water/ CH₃CN (1:1 v/v). In titration experiments, each time a 2 mL solution of **1** (20 μ M) was filled in a quartz optical cell of 1 cm optical path length, and the Cu²⁺ stock solution was added into the quartz optical cell gradually by using a micro-pippet. Spectral data were recorded at 2 min after the addition. In selectivity experiments, the test samples were prepared by placing appropriate amounts of metal ion stock into 2 mL solution of **L1** (20 μ M). For fluorescence measurements, excitation was provided at 495nm, and emission was collected from 508 to 650 nm.

Cell Culture

The EJ cell line was provided by Institute of Biochemistry and Cell Biology (China). Cells were grown in H-DMEM (Dulbecco's Modified Eagle's Medium, High Glucose) supplemented with 10 % FBS (Fetal Bovine Serum) in an atmosphere of 5 % CO₂, 95 % air at 37°C. Cells $(5 \times 10^8/L)$ were plated on 18 mm glass coverslips and allowed to adhere for 24 hours. Experiments to asses Cu²⁺ uptake were performed in the same media supplemented with 40 μ M CuCl₂ for 0.5h.

Fluorescence Imaging

Fluorescent pictures were taken on Zeiss Leica inverted epifluorescence /reflectance laser scanning confocal microscope. Excitation of 1-loaded cells at 515 nm was carried out with a HeNe laser. Emission was collected using a 560 nm long-pass filter. Emission was collected from 570 to 625 nm. Before the experiments, cells were washed with PBS buffer and then incubated with 20 μ M **L1** in DMF-PBS (1:49, v/v) for 5h at 37 °C. Cell imaging was then carried out after washing cells with PBS.

Binding Constant

The binding constant was calculated from the emission intensity - titration curves

according to the equation

 $I_{F}^{0}/(I_{F}-I_{F}^{0}) = (1/f)[(1/K_{S}[M])+1],$

where I_F^0 is the emission intensity of **L1** at 552 nm, I_F is the emission intensity of **L1** at 552 nm upon the addition of different amount of Cu^{2+} , f is the fraction of the initial fluorescence which is accessible to the sensor, [M] is the concentration of Cu^{2+} . The association constant values K_S is given by the ratio intercept / slope.

The binding constant was also calculated from the absorption intensity - titration curves according to the equation

$$A = A_0 + ((A_{lim} - A_0)/2C_0)(C_0 + [M] + 1/K - ((C_0 + [M] + 1/K)^2 - 4C0[M])^{0.5}),$$

where A and A₀ are the absorbance for **L1** (at 529 nm) in the presence and absence of Cu^{2+} ; C₀ is half of the concentration of **L1**; [M] is the concentration of the Cu^{2+} ; and A_{lim} is the limiting value of the absorbance in the presence of excess Cu^{2+} .

2. Synthesis routes and characteristic data

Rhodamine 6G hydrazone **2** is prepared according to the literature method.¹

Rhodamine 6G hydrozide (1.0 mmol, 0.428 g) and furan-2-carbaldehyde (1.0 mmol, 0.096 g) were mixed in boiling ethanol with 3 drops of acetic acid. After 4 h of stirring, brown precipitates obtained were filtered off, washed with ethanol/ether (1:1)

and dried over P₂O₅ under vacuum. Yield: 55 %. ¹H NMR (CDCl3, 400 MHz) δ (ppm): 8.06-8.027 (m, 2H), 7.434-7.455 (m, 2H), 7.362-7.365 (d, 1H *J* = 1.2 Hz), 7.261 (s, 2H), 6.366-6.393 (ss, 4H), 3.491 (b, 3H), 3.181-3.235 (q, 4H, *J*=7.2), 1.873 (s, 6H), 1.299-1.334 (t, 6H, *J* = 6.8 Hz). ¹³C NMR (CDCl3, 100 MHz) δ (ppm):165.14, 150.98, 150.47, 147.60, 143.77, 135.31, 133.49, 128.16, 127.49, 123.50, 123.45, 118.51, 112.04, 111.52, 105.84, 96.90, 65.47, 38.35, 16.66, 14.73. ESI-MS m/z = 507.2 [M + H]⁺, calc. for C27H29N5O2S =506.23.

3. Supplementary spectra data

Fig. S1 Changes in the absorption spectra of L1 (20 μ M) in the presence of different metal ions (40 μ M) in water/ CH₃CN (1:1 v/ v).

Fig.S2 (a) Photos of color changes of L1 (20 μ M) upon addition of 40 μ M different metal ions in water/ CH₃CN (1:1 v/v) solutions.

Figu. S3 Fitting of Fluorescence titration curve of **L1** in water/ CH_3CN (1:1 v/v) solution.

Fig. S4 Fluorescence spectra of **L1** (20 μ M) upon the addition of various metal ions (20 μ m for Cu²⁺; 40 μ m for all other cations) in water/ CH₃CN (1:1 v/v) solution.

Fig. S5. Fluorescence spectra of 20 μ M **L1** and 30 μ M Cu²⁺ upon the addition of 80 μ M EDTA in water/ CH₃CN (1:1 v/v) solution (λ_{ex} = 495 nm).

Reversible binding nature of Cu^{2+} with L1:

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S6 Fluorescence spectra of **1** (20 μ M) with the addition of Cu²⁺ (30 μ M) in water/CH₃CN (1:1 v/v) at various pH values (Ex. 495 nm; Em. 552 nm).

(1:1 v/v) solution.

Fig.S8 ¹H NMR (CDCl₃, 400 MHz) spectrum of L1.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S9 13 C NMR (CDCl₃, 100MHz) spectrum of L1.

Fig.S10 ESI mass spectrum of L1.

Fig.S11 ESI mass spectrum of 20 μ M **L1** in the presence of 1.2 equiv of Cu²⁺ in water/ CH₃CN (1:1 v/v) solution, indicating the formation of [**L1** +Cu²⁺-H].